354 research outputs found
A Multiplicative Model for Learning Distributed Text-Based Attribute Representations
In this paper we propose a general framework for learning distributed
representations of attributes: characteristics of text whose representations
can be jointly learned with word embeddings. Attributes can correspond to
document indicators (to learn sentence vectors), language indicators (to learn
distributed language representations), meta-data and side information (such as
the age, gender and industry of a blogger) or representations of authors. We
describe a third-order model where word context and attribute vectors interact
multiplicatively to predict the next word in a sequence. This leads to the
notion of conditional word similarity: how meanings of words change when
conditioned on different attributes. We perform several experimental tasks
including sentiment classification, cross-lingual document classification, and
blog authorship attribution. We also qualitatively evaluate conditional word
neighbours and attribute-conditioned text generation.Comment: 11 pages. An earlier version was accepted to the ICML-2014 Workshop
on Knowledge-Powered Deep Learning for Text Minin
End-to-End Instance Segmentation with Recurrent Attention
While convolutional neural networks have gained impressive success recently
in solving structured prediction problems such as semantic segmentation, it
remains a challenge to differentiate individual object instances in the scene.
Instance segmentation is very important in a variety of applications, such as
autonomous driving, image captioning, and visual question answering. Techniques
that combine large graphical models with low-level vision have been proposed to
address this problem; however, we propose an end-to-end recurrent neural
network (RNN) architecture with an attention mechanism to model a human-like
counting process, and produce detailed instance segmentations. The network is
jointly trained to sequentially produce regions of interest as well as a
dominant object segmentation within each region. The proposed model achieves
competitive results on the CVPPP, KITTI, and Cityscapes datasets.Comment: CVPR 201
- …
