291 research outputs found

    On Small Beams with Large Topological Charge II: Photons, Electrons and Gravitational Waves

    Get PDF
    Beams of light with a large topological charge significantly change their spatial structure when they are focused strongly. Physically, it can be explained by an emerging electromagnetic field component in the direction of propagation, which is neglected in the simplified scalar wave picture in optics. Here we ask: Is this a specific photonic behavior, or can similar phenomena also be predicted for other species of particles? We show that the same modification of the spatial structure exists for relativistic electrons as well as for focused gravitational waves. However, this is for different physical reasons: For electrons, which are described by the Dirac equation, the spatial structure changes due to a Spin-Orbit coupling in the relativistic regime. In gravitational waves described with linearized general relativity, the curvature of space-time between the transverse and propagation direction leads to the modification of the spatial structure. Thus, this universal phenomenon exists for both massive and massless elementary particles with Spin 1/2, 1 and 2. It would be very interesting whether other types of particles such as composite systems (neutrons or C60_{60}) or neutrinos show a similar behaviour and how this phenomenon can be explained in a unified physical way.Comment: 8 pages, 3 figure

    Quantum gate description for induced coherence without induced emission and related phenomena

    Get PDF
    We introduce unitary quantum gates for photon pair creation in spontaneous parametric down-conversion nonlinear crystals (NLs) and for photon path alignment. These are the two key ingredients for the method of "induced coherence without induced emission" and many ensuing variations thereof. The difficulty in doing so stems from an apparent mixing of the mode picture (such as the polarization of photons) and the Fock picture (such as the existence of the photons). We illustrate utility of these gates by obtaining quantum circuits for the experimental setups of the frustrated generation of photon pairs, identification of a point-like object with undetected photons, and creation of a Bell state. We also introduce an effective nonunitary description for the action of NLs in experiments where all the NLs are pumped coherently. As an example, by using this simplifying picture, we show how NLs can be used to create superposition of given quantum states in a modular fashion.Comment: 4+3 page

    Quantum Experiments and Graphs: Multiparty States as coherent superpositions of Perfect Matchings

    Get PDF
    We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and Graph Theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the complexity class #P-complete, thus cannot be done efficiently. To strengthen the link further, theorems from Graph Theory -- such as Hall's marriage problem -- are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and potentially simulate properties of Graphs and Networks with quantum experiments (such as critical exponents and phase transitions).Comment: 6+5 pages, 4+7 figure

    A quantum router for high-dimensional entanglement

    Full text link
    In addition to being a workhorse for modern quantum technologies, entanglement plays a key role in fundamental tests of quantum mechanics. The entanglement of photons in multiple levels, or dimensions, explores the limits of how large an entangled state can be, while also greatly expanding its applications in quantum information. Here we show how a high-dimensional quantum state of two photons entangled in their orbital angular momentum can be split into two entangled states with a smaller dimensionality structure. Our work demonstrates that entanglement is a quantum property that can be subdivided into spatially separated parts. In addition, our technique has vast potential applications in quantum as well as classical communication systems.Comment: 5 pages, 5 figure

    On Small Beams with Large Topological Charge

    Get PDF
    Light beams can carry a discrete, in principle unbounded amount of angular momentum. Examples of such beams, the Laguerre-Gauss modes, are frequently expressed as solutions of the paraxial wave equation. There, they are eigenstates of the orbital angular momentum (OAM) operator. The paraxial solutions predict that beams with large OAM could be used to resolve arbitrarily small distances - a dubious situation. Here we show how to solve that situation by calculating the properties of beams free from the paraxial approximation. We find the surprising result that indeed one can resolve smaller distances with larger OAM, although with decreased visibility. If the visibility is kept constant (for instance at the Rayleigh criterion, the limit where two points are reasonably distinguishable), larger OAM does not provide an advantage. The drop in visibility is due to a field in the direction of propagation, which is neglected within the paraxial limit.Comment: 6 pages, 2 figures; + supplementary informatio

    A Snapshot of Foundational Attitudes Toward Quantum Mechanics

    Full text link
    Foundational investigations in quantum mechanics, both experimental and theoretical, gave birth to the field of quantum information science. Nevertheless, the foundations of quantum mechanics themselves remain hotly debated in the scientific community, and no consensus on essential questions has been reached. Here, we present the results of a poll carried out among 33 participants of a conference on the foundations of quantum mechanics. The participants completed a questionnaire containing 16 multiple-choice questions probing opinions on quantum-foundational issues. Participants included physicists, philosophers, and mathematicians. We describe our findings, identify commonly held views, and determine strong, medium, and weak correlations between the answers. Our study provides a unique snapshot of current views in the field of quantum foundations, as well as an analysis of the relationships between these views.Comment: 17 pages, 3 figure

    Young's experiment and the finiteness of information

    Full text link
    Young's experiment is the quintessential quantum experiment. It is argued here that quantum interference is a consequence of the finiteness of information. The observer has the choice whether that information manifests itself as path information or in the interference pattern or in both partially to the extent defined by the finiteness of information.Comment: 5 pages, 3 figures, typos remove
    • …
    corecore