132 research outputs found

    Parameterized Algorithms for List K-Cycle

    Get PDF
    The classic K-Cycle problem asks if a graph G, with vertex set V(G), has a simple cycle containing all vertices of a given set K subseteq V(G). In terms of colored graphs, it can be rephrased as follows: Given a graph G, a set K subset of V(G) and an injective coloring c from K to {1,2,...,|K|}, decide if G has a simple cycle containing each color in {1,2,...,|K|} (once). Another problem widely known since the introduction of color coding is {Colorful Cycle}. Given a graph G and a coloring c from V(G) to {1,2,...,k} for some natural number k, it asks if G has a simple cycle of length k containing each color in {1,2,...,k} (once). We study a generalization of these problems: Given a graph G, a set K subset of V(G), a list-coloring L from K to 2^{{1,2,...,k^*}} for some natural number k^* and a parameter k, List K-Cycle asks if one can assign a color to each vertex in K so that G would have a simple cycle (of arbitrary length) containing exactly k vertices from K with distinct colors. We design a randomized algorithm for List K-Cycle running in time 2^kn^{O(1)} on an -vertex graph, matching the best known running times of algorithms for both K-Cycle and Colorful Cycle. Moreover, unless the Set Cover Conjecture is false, our algorithm is essentially optimal. We also study a variant of List K-Cycle that generalizes the classic Hamiltonicity problem, where one specifies the size of a solution. Our results integrate three related algebraic approaches, introduced by Bjorklund, Husfeldt and Taslaman (SODA\u2712), Bjorklund, Kaski and Kowalik (STACS\u2713), and Bjorklund (FOCS\u2710)

    Parameterized Complexity of Multi-Node Hubs

    Get PDF
    Hubs are high-degree nodes within a network. The examination of the emergence and centrality of hubs lies at the heart of many studies of complex networks such as telecommunication networks, biological networks, social networks and semantic networks. Furthermore, identifying and allocating hubs are routine tasks in applications. In this paper, we do not seek a hub that is a single node, but a hub that consists of k nodes. Formally, given a graph G=(V,E), we a seek a set A subseteq V of size k that induces a connected subgraph from which at least p edges emanate. Thus, we identify k nodes which can act as a unit (due to the connectivity constraint) that is a hub (due to the cut constraint). This problem, which we call Multi-Node Hub (MNH), can also be viewed as a variant of the classic Max Cut problem. While it is easy to see that MNH is W[1]-hard with respect to the parameter k, our main contribution is the first parameterized algorithm that shows that MNH is FPT with respect to the parameter p. Despite recent breakthrough advances for cut-problems like Multicut and Minimum Bisection, MNH is still very challenging. Not only does a connectivity constraint has to be handled on top of the involved machinery developed for these problems, but also the fact that MNH is a maximization problem seems to prevent the applicability of this machinery in the first place. To deal with the latter issue, we give non-trivial reduction rules that show how MNH can be preprocessed into a problem where it is necessary to delete a bounded-in-parameter number of vertices. Then, to handle the connectivity constraint, we use a novel application of the form of tree decomposition introduced by Cygan et al. [STOC 2014] to solve Minimum Bisection, where we demonstrate how connectivity constraints can be replaced by simpler size constraints. Our approach may be relevant to the design of algorithms for other cut-problems of this nature

    Parameterized Complexity of Incomplete Connected Fair Division

    Get PDF
    Fair division of resources among competing agents is a fundamental problem in computational social choice and economic game theory. It has been intensively studied on various kinds of items (divisible and indivisible) and under various notions of fairness. We focus on Connected Fair Division (CFD), the variant of fair division on graphs, where the resources are modeled as an item graph. Here, each agent has to be assigned a connected subgraph of the item graph, and each item has to be assigned to some agent. We introduce a generalization of CFD, termed Incomplete CFD (ICFD), where exactly p vertices of the item graph should be assigned to the agents. This might be useful, in particular when the allocations are intended to be "economical" as well as fair. We consider four well-known notions of fairness: PROP, EF, EF1, EFX. First, we prove that EF-ICFD, EF1-ICFD, and EFX-ICFD are W[1]-hard parameterized by p plus the number of agents, even for graphs having constant vertex cover number (vcn). In contrast, we present a randomized FPT algorithm for PROP-ICFD parameterized only by p. Additionally, we prove both positive and negative results concerning the kernelization complexity of ICFD under all four fairness notions, parameterized by p, vcn, and the total number of different valuations in the item graph (val)

    Planar Disjoint Paths, Treewidth, and Kernels

    Full text link
    In the Planar Disjoint Paths problem, one is given an undirected planar graph with a set of kk vertex pairs (si,ti)(s_i,t_i) and the task is to find kk pairwise vertex-disjoint paths such that the ii-th path connects sis_i to tit_i. We study the problem through the lens of kernelization, aiming at efficiently reducing the input size in terms of a parameter. We show that Planar Disjoint Paths does not admit a polynomial kernel when parameterized by kk unless coNP ⊆\subseteq NP/poly, resolving an open problem by [Bodlaender, Thomass{\'e}, Yeo, ESA'09]. Moreover, we rule out the existence of a polynomial Turing kernel unless the WK-hierarchy collapses. Our reduction carries over to the setting of edge-disjoint paths, where the kernelization status remained open even in general graphs. On the positive side, we present a polynomial kernel for Planar Disjoint Paths parameterized by k+twk + tw, where twtw denotes the treewidth of the input graph. As a consequence of both our results, we rule out the possibility of a polynomial-time (Turing) treewidth reduction to tw=kO(1)tw= k^{O(1)} under the same assumptions. To the best of our knowledge, this is the first hardness result of this kind. Finally, combining our kernel with the known techniques [Adler, Kolliopoulos, Krause, Lokshtanov, Saurabh, Thilikos, JCTB'17; Schrijver, SICOMP'94] yields an alternative (and arguably simpler) proof that Planar Disjoint Paths can be solved in time 2O(k2)⋅nO(1)2^{O(k^2)}\cdot n^{O(1)}, matching the result of [Lokshtanov, Misra, Pilipczuk, Saurabh, Zehavi, STOC'20].Comment: To appear at FOCS'23, 82 pages, 30 figure
    • …
    corecore