679 research outputs found
Recommended from our members
Characterisation of the UV environment of the Beagle 2 landing site
A study of the UV environment of the Beagle 2 landing site has been carried out. An instrument to measure the UV flux is present on the lander, and this work serves to aid in the interpretation of expected data
Recommended from our members
Impact pressures generated by spherical particle hypervelocity impact on Yorkshire Sandstone
Hypervelocity impact tests were carried out at 4.8 km/s using the Open University's All Axis Light Gas Gun (AALGG) in the Planetary and Space Sciences Research Institute (PSSRI)'s Hypervelocity Impact Laboratory. A first estimate of the peak loading pressures was made using preliminary hydrocode simulations, supported by calculations. Following a review of existing published quartz and sandstone data, our previously published plate impact data were combined with high pressure quartz data to produce a synthetic Hugoniot. This will form the basis of future hydrocode modelling, as a linear Us-Up relationship does not adequately represent the behaviour of sandstone over the pressure range of interest, as indicated by experimental data on Coconino sandstone. This work is a precursor to investigating the biological effects of shock on microorganisms in sandstone targets. This paper also contains the first presentation of results of ultra high speed imaging of hypervelocity impact at the Open University. © 2007 American Institute of Physics
Recommended from our members
A miniature UV-VIS spectrometer for the surface of Mars
A miniature spectrometer is in the process of development for a future Mars mission, to measure the UV-VIS spectrum encountered at the martian surface. With an intended mass of ~100 g, the spectrometer is planned as part of the ESA ExoMars mission
Recommended from our members
A close encounter with a terrestrial dust devil
We report on an extremely well characterised encounter with a terrestrial dust devil, and its comparison with martian dust devils
Recommended from our members
Constraints on the Huygens landing site topography from the Surface Science Package Acoustic Properties Instrument
We present analysis of the results from the Huygens acoustic sounder instrument. The sounder sees a relatively smooth terrain, with specular reflectance characteristics
Recommended from our members
The Beagle 2 environmental sensors: intended measurements and scientific goals
The Beagle 2 lander, due for arrival on Mars in December 2003, carries an Environmental Sensors Suite to monitor the local meteorology and carry out simple dust and oxidant measurements. The suite is described, and the scientific goals are discussed
Recommended from our members
Exomars entry and descent science
The entry, descent and landing of ExoMars offer a rare (once-per-mission) opportunity to perform in situ investigation of the martian environment over a wide altitude range. We present an initial assessment of the atmospheric science that can be performed using sensors of the Entry, Descent and Landing System (EDLS), over and above the expected engineering information. This is intended to help fulfill the concept of an Atmospheric Parameters Package (APP), as mentioned in the ExoMars draft Science Management Plan [ESA, 2005].
Mars' atmosphere is highly variable in time and space, due to phenomena including inertio-gravity waves, thermal tide effects, dust, solar wind conditions, and diurnal, seasonal and topographic effects. Atmospheric profile measurements, drawing on heritage from the Huygens Atmospheric Structure Instrument (HASI), which encountered Titan's atmosphere
in 2005 [1], should allow us to address questions of the martian atmosphere's structure, dynamics and variability
Using the inertia of spacecraft during landing to penetrate regoliths of the Solar System
The high inertia, i.e. high mass and low speed, of a landing spacecraft has the potential to drive a penetrometer into the subsurface without the need for a dedicated deployment mechanism, e.g., during Huygens landing on Titan. Such a method could complement focused subsurface exploration missions, particularly in the low gravity environments of comets and asteroids, as it is conducive to conducting surveys and to the deployment of sensor networks. We make full-scale laboratory simulations of a landing spacecraft with a penetrometer attached to its base plate. The tip design is based on that used in terrestrial Cone Penetration Testing (CPT) with a large enough shaft diameter to house instruments for analysing pristine subsurface material. Penetrometer measurements are made in a variety of regolith analogue materials and target compaction states. For comparison a copy of the ACC-E penetrometer from the Huygens mission to Titan is used. A test rig at the Open University is used and is operated over a range of speeds from 0.9 to 3 m sâ1 and under two gravitational accelerations.
The penetrometer was found to be sensitive to the targetâs compaction state with a high degree of repeatability. The penetrometer measurements also produced unique pressure profile shapes for each material. Measurements in limestone powder produced an exponential increase in pressure with depth possibly due to increasing compaction with depth. Measurements in sand produced an almost linear increase in pressure with depth. Iron powder produced significantly higher pressures than sand presumably due to the rough surface of the grains increasing the grain-grain friction. Impacts into foamglas produced with both ACC-E and the large penetrometer produced an initial increase in pressure followed by a leveling off as expected in a consolidated material. Measurements in sand suggest that the pressure on the tip is not significantly dependent on speed over the range tested, which suggests bearing strength equations could be applied to impact penetrometry in sand-like regoliths.
In terms of performance we find the inertia of a landing spacecraft, with a mass of 100 kg, is adequate to penetrate regoliths expected on the surface of Solar System bodies. Limestone powder, an analogue for a dusty surface, offered very little resistance allowing full penetration of the target container. Both iron powder, representing a stronger coarse grained regolith, and foamglas, representing a consolidated comet crust, could be penetrated to similar depths of around two to three tip diameters. Speed tests suggest a linear dependence of penetration depth on impact speed
- âŠ