7 research outputs found

    Improved Stance Prediction in a User Similarity Feature Space

    Get PDF

    Using Twitter to Understand Public Interest in Climate Change: The case of Qatar

    Full text link
    Climate change has received an extensive attention from public opinion in the last couple of years, after being considered for decades as an exclusive scientific debate. Governments and world-wide organizations such as the United Nations are working more than ever on raising and maintaining public awareness toward this global issue. In the present study, we examine and analyze Climate Change conversations in Qatar's Twittersphere, and sense public awareness towards this global and shared problem in general, and its various related topics in particular. Such topics include but are not limited to politics, economy, disasters, energy and sandstorms. To address this concern, we collect and analyze a large dataset of 109 million tweets posted by 98K distinct users living in Qatar -- one of the largest emitters of CO2 worldwide. We use a taxonomy of climate change topics created as part of the United Nations Pulse project to capture the climate change discourse in more than 36K tweets. We also examine which topics people refer to when they discuss climate change, and perform different analysis to understand the temporal dynamics of public interest toward these topics.Comment: Will appear in the proceedings of the International Workshop on Social Media for Environment and Ecological Monitoring (SWEEM'16

    Resilience analytics: coverage and robustness in multi-modal transportation networks

    No full text
    Abstract A multi-modal transportation system of a city can be modeled as a multiplex network with different layers corresponding to different transportation modes. These layers include, but are not limited to, bus network, metro network, and road network. Formally, a multiplex network is a multilayer graph in which the same set of nodes are connected by different types of relationships. Intra-layer relationships denote the road segments connecting stations of the same transportation mode, whereas inter-layer relationships represent connections between different transportation modes within the same station. Given a multi-modal transportation system of a city, we are interested in assessing its quality or efficiency by estimating the coverage i.e., a portion of the city that can be covered by a random walker who navigates through it within a given time budget, or steps. We are also interested in the robustness of the whole transportation system which denotes the degree to which the system is able to withstand a random or targeted failure affecting one or more parts of it. Previous approaches proposed a mathematical framework to numerically compute the coverage in multiplex networks. However solutions are usually based on eigenvalue decomposition, known to be time consuming and hard to obtain in the case of large systems. In this work, we propose MUME, an efficient algorithm for Multi-modal Urban Mobility Estimation, that takes advantage of the special structure of the supra-Laplacian matrix of the transportation multiplex, to compute the coverage of the system. We conduct a comprehensive series of experiments to demonstrate the effectiveness and efficiency of MUME on both synthetic and real transportation networks of various cities such as Paris, London, New York and Chicago. A future goal is to use this experience to make projections for a fast growing city like Doha

    Using Twitter to Understand Public Interest in Climate Change: The case of Qatar

    No full text
    Will appear in the proceedings of the International Workshop on Social Media for Environment and Ecological Monitoring (SWEEM'16)International audienceClimate change has received an extensive attention from public opinion in the last couple of years, after being considered for decades as an exclusive scientific debate. Governments and world-wide organizations such as the United Nations are working more than ever on raising and maintaining public awareness toward this global issue. In the present study, we examine and analyze Climate Change conversations in Qatar's Twittersphere, and sense public awareness towards this global and shared problem in general, and its various related topics in particular. Such topics include but are not limited to politics, economy, disasters, energy and sandstorms. To address this concern, we collect and analyze a large dataset of 109 million tweets posted by 98K distinct users living in Qatar -- one of the largest emitters of CO2 worldwide. We use a taxonomy of climate change topics created as part of the United Nations Pulse project to capture the climate change discourse in more than 36K tweets. We also examine which topics people refer to when they discuss climate change, and perform different analysis to understand the temporal dynamics of public interest toward these topics

    Using Twitter to Understand Public Interest in Climate Change: The case of Qatar

    No full text
    Will appear in the proceedings of the International Workshop on Social Media for Environment and Ecological Monitoring (SWEEM'16)International audienceClimate change has received an extensive attention from public opinion in the last couple of years, after being considered for decades as an exclusive scientific debate. Governments and world-wide organizations such as the United Nations are working more than ever on raising and maintaining public awareness toward this global issue. In the present study, we examine and analyze Climate Change conversations in Qatar's Twittersphere, and sense public awareness towards this global and shared problem in general, and its various related topics in particular. Such topics include but are not limited to politics, economy, disasters, energy and sandstorms. To address this concern, we collect and analyze a large dataset of 109 million tweets posted by 98K distinct users living in Qatar -- one of the largest emitters of CO2 worldwide. We use a taxonomy of climate change topics created as part of the United Nations Pulse project to capture the climate change discourse in more than 36K tweets. We also examine which topics people refer to when they discuss climate change, and perform different analysis to understand the temporal dynamics of public interest toward these topics

    Resilience analytics: coverage and robustness in multi-modal transportation networks

    No full text
    A multi-modal transportation system of a city can be modeled as a multiplex network with different layers corresponding to different transportation modes. These layers include, but are not limited to, bus network, metro network, and road network. Formally, a multiplex network is a multilayer graph in which the same set of nodes are connected by different types of relationships. Intra-layer relationships denote the road segments connecting stations of the same transportation mode, whereas inter-layer relationships represent connections between different transportation modes within the same station. Given a multi-modal transportation system of a city, we are interested in assessing its quality or efficiency by estimating the coverage i.e., a portion of the city that can be covered by a random walker who navigates through it within a given time budget, or steps. We are also interested in the robustness of the whole transportation system which denotes the degree to which the system is able to withstand a random or targeted failure affecting one or more parts of it. Previous approaches proposed a mathematical framework to numerically compute the coverage in multiplex networks. However solutions are usually based on eigenvalue decomposition, known to be time consuming and hard to obtain in the case of large systems. In this work, we propose MUME, an efficient algorithm for Multi-modal Urban Mobility Estimation, that takes advantage of the special structure of the supra-Laplacian matrix of the transportation multiplex, to compute the coverage of the system. We conduct a comprehensive series of experiments to demonstrate the effectiveness and efficiency of MUME on both synthetic and real transportation networks of various cities such as Paris, London, New York and Chicago. A future goal is to use this experience to make projections for a fast growing city like Doha.Other Information Published in: EPJ Data Science License: https://creativecommons.org/licenses/by/4.0See article on publisher's website: http://dx.doi.org/10.1140/epjds/s13688-018-0139-7</p
    corecore