220 research outputs found

    Hilbert Irreducibility above algberaic groups

    Full text link
    The paper offers versions of Hilbert's Irreducibility Theorem for the lifting of points in a cyclic subgroup of an algebraic group to a ramified cover. A version of Bertini Theorem in this context is also obtained.Comment: 22 page

    On the Hilbert Property and the Fundamental Group of Algebraic Varieties

    Full text link
    We review, under a perspective which appears different from previous ones, the so-called Hilbert Property (HP) for an algebraic variety (over a number field); this is linked to Hilbert's Irreducibility Theorem and has important implications, for instance towards the Inverse Galois Problem. We shall observe that the HP is in a sense `opposite' to the Chevalley-Weil Theorem, which concerns unramified covers; this link shall immediately entail the result that the HP can possibly hold only for simply connected varieties (in the appropriate sense). In turn, this leads to new counterexamples to the HP, involving Enriques surfaces. We also prove the HP for a K3 surface related to the above Enriques surface, providing what appears to be the first example of a non-rational variety for which the HP can be proved. We also formulate some general conjectures relating the HP with the topology of algebraic varieties.Comment: 24 page

    A lower bound for the height of a rational function at SS-unit points

    Full text link
    Let Γ\Gamma be a finitely generated subgroup of the multiplicative group \G_m^2(\bar{Q}). Let p(X,Y),q(X,Y)\in\bat{Q} be two coprime polynomials not both vanishing at (0,0)(0,0); let Ï”>0\epsilon>0. We prove that, for all (u,v)∈Γ(u,v)\in\Gamma outside a proper Zariski closed subset of Gm2G_m^2, the height of p(u,v)/q(u,v)p(u,v)/q(u,v) verifies h(p(u,v)/q(u,v))>h(1:p(u,v):q(u,v))−ϔmax⁥(h(uu),h(v))h(p(u,v)/q(u,v))>h(1:p(u,v):q(u,v))-\epsilon \max(h(uu),h(v)). As a consequence, we deduce upper bounds for (a generalized notion of) the g.c.d. of u−1,v−1u-1,v-1 for u,vu,v running over Γ\Gamma.Comment: Plain TeX 18 pages. Version 2; minor changes. To appear on Monatshefte fuer Mathemati

    Integral points, divisibility between values of polynomials and entire curves on surfaces

    Get PDF
    We prove some new degeneracy results for integral points and entire curves on surfaces; in particular, we provide the first example, to our knowledge, of a simply connected smooth variety whose sets of integral points are never Zariski-dense (and no entire curve has Zariski-dense image). Some of our results are connected with divisibility problems, i.e. the problem of describing the integral points in the plane where the values of some given polynomials in two variables divide the values of other given polynomials.Comment: minor changes, two references adde

    Equations in the Hadamard ring of rational functions

    Full text link
    Let k be a number field. It is well known that the set of sequences composed by Taylor coefficients of rational functions over k is closed under component-wise operations, and so it can be equipped with a ring structure. A conjecture due to Pisot asks if (after enlarging the field) one can take d-th roots in this ring, provided d-th roots of coefficients can be taken in k. This was proved true in a preceding paper of the second author; in this article we generalize this result to more general equations, monic in Y, where the former case can be recovered for g(X,Y)=X^d-Y=0. Combining this with the Hadamard quotient theorem by Pourchet and Van der Poorten, we are able to get rid of the monic restriction, and have a theorem that generalizes both results.Comment: 18 pages, LaTe
    • 

    corecore