3 research outputs found
Zero-Shot Aerial Object Detection with Visual Description Regularization
Existing object detection models are mainly trained on large-scale labeled
datasets. However, annotating data for novel aerial object classes is expensive
since it is time-consuming and may require expert knowledge. Thus, it is
desirable to study label-efficient object detection methods on aerial images.
In this work, we propose a zero-shot method for aerial object detection named
visual Description Regularization, or DescReg. Concretely, we identify the weak
semantic-visual correlation of the aerial objects and aim to address the
challenge with prior descriptions of their visual appearance. Instead of
directly encoding the descriptions into class embedding space which suffers
from the representation gap problem, we propose to infuse the prior inter-class
visual similarity conveyed in the descriptions into the embedding learning. The
infusion process is accomplished with a newly designed similarity-aware triplet
loss which incorporates structured regularization on the representation space.
We conduct extensive experiments with three challenging aerial object detection
datasets, including DIOR, xView, and DOTA. The results demonstrate that DescReg
significantly outperforms the state-of-the-art ZSD methods with complex
projection designs and generative frameworks, e.g., DescReg outperforms best
reported ZSD method on DIOR by 4.5 mAP on unseen classes and 8.1 in HM. We
further show the generalizability of DescReg by integrating it into generative
ZSD methods as well as varying the detection architecture.Comment: 13 pages, 3 figure
VCL Challenges 2023 at ICCV 2023 Technical Report: Bi-level Adaptation Method for Test-time Adaptive Object Detection
This report outlines our team's participation in VCL Challenges B Continual
Test_time Adaptation, focusing on the technical details of our approach. Our
primary focus is Testtime Adaptation using bi_level adaptations, encompassing
image_level and detector_level adaptations. At the image level, we employ
adjustable parameterbased image filters, while at the detector level, we
leverage adjustable parameterbased mean teacher modules. Ultimately, through
the utilization of these bi_level adaptations, we have achieved a remarkable
38.3% mAP on the target domain of the test set within VCL Challenges B. It is
worth noting that the minimal drop in mAP, is mearly 4.2%, and the overall
performance is 32.5% mAP
Zero-Shot Aerial Object Detection with Visual Description Regularization
Existing object detection models are mainly trained on large-scale labeled datasets. However, annotating data for novel aerial object classes is expensive since it is time-consuming and may require expert knowledge. Thus, it is desirable to study label-efficient object detection methods on aerial images. In this work, we propose a zero-shot method for aerial object detection named visual Description Regularization, or DescReg.
Concretely, we identify the weak semantic-visual correlation of the aerial objects and aim to address the challenge with prior descriptions of their visual appearance. Instead of directly encoding the descriptions into class embedding space which suffers from the representation gap problem, we propose to infuse the prior inter-class visual similarity conveyed in the descriptions into the embedding learning. The infusion process is accomplished with a newly designed similarity-aware triplet loss which incorporates structured regularization on the representation space. We conduct extensive experiments with three challenging aerial object detection datasets, including DIOR, xView, and DOTA. The results demonstrate that DescReg significantly outperforms the state-of-the-art ZSD methods with complex projection designs and generative frameworks, e.g., DescReg outperforms
best reported ZSD method on DIOR by 4.5 mAP on unseen classes and 8.1 in HM. We further show the generalizability of DescReg by integrating it into generative ZSD methods as well as varying the detection architecture.
Codes will be released at https://github.com/zq-zang/DescReg