12 research outputs found

    Titania-graphene oxide nanocomposite-based philadelphia-positive leukemia therapy

    No full text
    Philadelphia-positive (Ph+) leukemia is a type of blood cancer also known as acute lymphoblastic leukemia (ALL), affecting 20-30% of adults diagnosed worldwide and having an engraved prognosis as compared to other types of leukemia. The current treatment regimens mainly rely on tyrosine kinase inhibitors (TKIs) and bone marrow transplants. To date, several generations of TKIs have been developed due to associated resistance and frequent relapse, with cardiovascular system anomalies being the most devastating complication. Nanotechnology has the potential to address these limitations by the targeted drug delivery and controlled release of TKIs. This study focused on the titanium dioxide (TiO2) and graphene oxide (GO) nanocomposite employment to load nilotinib and ponatinib TKIs for therapy of Ph+ leukemia cell line (K562) and Ba/F3 cells engineered to express BCR-ABL oncogene. Meanwhile, after treatment, the oncogene expressing fibroblast cells (Rat-1 P185) were evaluated for their colony formation ability under 3D conditions. To validate the nanocomposite formation, the TiO2-GO nanocomposites were characterized by scanning electron microscope, DLS, XRD, FTIR, zeta potential, EDX, and element mapping. The TKI-loaded TiO2-GO was not inferior to the free drugs after evaluating their effects by a cell viability assay (XTT), apoptosis induction, and colony formation inhibition. The cell signaling pathways of the mammalian target of rapamycin (mTOR), signal transducers and activators of transcription 5 (STAT5), and extracellular signal-regulated kinase (Erk1/2) were also investigated by Western blot. These signaling pathways were significantly downregulated in the TKI-loaded TiO2-GO-treated groups. Based on the findings above, we can conclude that TiO2-GO exhibited excellent drug delivery potential that can be used for Ph+ leukemia therapy in the future, subject to further investigations

    Genome-Wide Analysis of Codon Usage Patterns of SARS-CoV-2 Virus Reveals Global Heterogeneity of COVID-19

    No full text
    The ongoing outbreak of coronavirus disease COVID-19 is significantly implicated by global heterogeneity in the genome organization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The causative agents of global heterogeneity in the whole genome of SARS-CoV-2 are not well characterized due to the lack of comparative study of a large enough sample size from around the globe to reduce the standard deviation to the acceptable margin of error. To better understand the SARS-CoV-2 genome architecture, we have performed a comprehensive analysis of codon usage bias of sixty (60) strains to get a snapshot of its global heterogeneity. Our study shows a relatively low codon usage bias in the SARS-CoV-2 viral genome globally, with nearly all the over-preferred codons’ A.U. ended. We concluded that the SARS-CoV-2 genome is primarily shaped by mutation pressure; however, marginal selection pressure cannot be overlooked. Within the A/U rich virus genomes of SARS-CoV-2, the standard deviation in G.C. (42.91% ± 5.84%) and the GC3 value (30.14% ± 6.93%) points towards global heterogeneity of the virus. Several SARS-CoV-2 viral strains were originated from different viral lineages at the exact geographic location also supports this fact. Taking all together, these findings suggest that the general root ancestry of the global genomes are different with different genome’s level adaptation to host. This research may provide new insights into the codon patterns, host adaptation, and global heterogeneity of SARS-CoV-2

    Genome-Wide Analysis of Codon Usage Patterns of SARS-CoV-2 Virus Reveals Global Heterogeneity of COVID-19

    No full text
    The ongoing outbreak of coronavirus disease COVID-19 is significantly implicated by global heterogeneity in the genome organization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The causative agents of global heterogeneity in the whole genome of SARS-CoV-2 are not well characterized due to the lack of comparative study of a large enough sample size from around the globe to reduce the standard deviation to the acceptable margin of error. To better understand the SARS-CoV-2 genome architecture, we have performed a comprehensive analysis of codon usage bias of sixty (60) strains to get a snapshot of its global heterogeneity. Our study shows a relatively low codon usage bias in the SARS-CoV-2 viral genome globally, with nearly all the over-preferred codons’ A.U. ended. We concluded that the SARS-CoV-2 genome is primarily shaped by mutation pressure; however, marginal selection pressure cannot be overlooked. Within the A/U rich virus genomes of SARS-CoV-2, the standard deviation in G.C. (42.91% ± 5.84%) and the GC3 value (30.14% ± 6.93%) points towards global heterogeneity of the virus. Several SARS-CoV-2 viral strains were originated from different viral lineages at the exact geographic location also supports this fact. Taking all together, these findings suggest that the general root ancestry of the global genomes are different with different genome’s level adaptation to host. This research may provide new insights into the codon patterns, host adaptation, and global heterogeneity of SARS-CoV-2.</jats:p

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    No full text

    Azithromycin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    No full text

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    No full text
    corecore