30 research outputs found
Direct reconstruction of the two-dimensional pair distribution function in systems with angular correlations
An x-ray scattering approach to determine the two-dimensional (2D) pair
distribution function (PDF) in partially ordered 2D systems is proposed. We
derive relations between the structure factor and PDF that enable quantitative
studies of positional and bond-orientational (BO) order in real space. We apply
this approach in the x-ray study of a liquid crystal (LC) film undergoing the
smectic-hexatic phase transition, to analyze the interplay between the
positional and BO order during the temperature evolution of the LC film. We
analyze the positional correlation length in different directions in real
space.Comment: 23 pages, 8 figure
Statistical properties of a free-electron laser revealed by the Hanbury Brown and Twiss interferometry
We present a comprehensive experimental analysis of statistical properties of
the self-amplified spontaneous emission (SASE) free-electron laser (FEL) FLASH
at DESY in Hamburg by means of Hanbury Brown and Twiss (HBT) interferometry.
The experiments were performed at the FEL wavelengths of 5.5 nm, 13.4 nm, and
20.8 nm. We determined the 2-nd order intensity correlation function for all
wavelengths and different operation conditions of FLASH. In all experiments a
high degree of spatial coherence (above 50%) was obtained. Our analysis
performed in spatial and spectral domains provided us with the independent
measurements of an average pulse duration of the FEL that were below 60 fs. To
explain complicated behaviour of the 2-nd order intensity correlation function
we developed advanced theoretical model that includes the presence of multiple
beams and external positional jitter of the FEL pulses. By this analysis we
determined that in most experiments several beams were present in radiating
field and in one of the experiments external positional jitter was about 25% of
the beam size. We envision that methods developed in our study will be used
widely for analysis and diagnostics of the FEL radiation.Comment: 29 pages, 14 figures, 3 table
Seeded x-ray free-electron laser generating radiation with laser statistical properties
The invention of optical lasers led to a revolution in the field of optics
and even to the creation of completely new fields of research such as quantum
optics. The reason was their unique statistical and coherence properties. The
newly emerging, short-wavelength free-electron lasers (FELs) are sources of
very bright coherent extreme-ultraviolet (XUV) and x-ray radiation with pulse
durations on the order of femtoseconds, and are presently considered to be
laser sources at these energies. Most existing FELs are highly spatially
coherent but in spite of their name, they behave statistically as chaotic
sources. Here, we demonstrate experimentally, by combining Hanbury Brown and
Twiss (HBT) interferometry with spectral measurements that the seeded XUV FERMI
FEL-2 source does indeed behave statistically as a laser. The first steps have
been taken towards exploiting the first-order coherence of FELs, and the
present work opens the way to quantum optics experiments that strongly rely on
high-order statistical properties of the radiation.Comment: 24 pages, 10 figures, 37 reference
Spatially resolved fluorescence of caesium lead halide perovskite supercrystals reveals quasi-atomic behavior of nanocrystals
We correlate spatially resolved fluorescence (-lifetime) measurements with X-ray nanodiffraction to reveal surface defects in supercrystals of self-assembled cesium lead halide perovskite nanocrystals and study their effect on the fluorescence properties. Upon comparison with density functional modeling, we show that a loss in structural coherence, an increasing atomic misalignment between adjacent nanocrystals, and growing compressive strain near the surface of the supercrystal are responsible for the observed fluorescence blueshift and decreased fluorescence lifetimes. Such surface defect-related optical properties extend the frequently assumed analogy between atoms and nanocrystals as so-called quasi-atoms. Our results emphasize the importance of minimizing strain during the self-assembly of perovskite nanocrystals into supercrystals for lighting application such as superfluorescent emitters
Quantum Imaging with Incoherently Scattered Light from a Free-Electron Laser
The advent of accelerator-driven free-electron lasers (FEL) has opened new
avenues for high-resolution structure determination via diffraction methods
that go far beyond conventional x-ray crystallography methods. These techniques
rely on coherent scattering processes that require the maintenance of
first-order coherence of the radiation field throughout the imaging procedure.
Here we show that higher-order degrees of coherence, displayed in the intensity
correlations of incoherently scattered x-rays from an FEL, can be used to image
two-dimensional objects with a spatial resolution close to or even below the
Abbe limit. This constitutes a new approach towards structure determination
based on incoherent processes, including Compton scattering, fluorescence
emission or wavefront distortions, generally considered detrimental for imaging
applications. Our method is an extension of the landmark intensity correlation
measurements of Hanbury Brown and Twiss to higher than second-order paving the
way towards determination of structure and dynamics of matter in regimes where
coherent imaging methods have intrinsic limitations
A hybrid optoelectronic Mott insulator
The coupling of electronic degrees of freedom in materials to create "hybridized functionalities" is a holy grail of modern condensed matter physics that may produce versatile mechanisms of control. Correlated electron systems often exhibit coupled degrees of freedom with a high degree of tunability which sometimes lead to hybridized functionalities based on external stimuli. However, the mechanisms of tunability and the sensitivity to external stimuli are determined by intrinsic material properties which are not always controllable. A Mott metal-insulator transition (MIT) is technologically attractive due to the large changes in resistance, tunable by doping, strain, electric fields, and orbital occupancy but not, in and of itself, controllable with light. Here, an alternate approach is presented to produce optical functionalities using a properly engineered photoconductor/strongly correlated hybrid heterostructure. This approach combines a photoconductor, which does not exhibit an MIT, with a strongly correlated oxide, which is not photoconducting. Due to the intimate proximity between the two materials, the heterostructure exhibits giant volatile and nonvolatile, photoinduced resistivity changes with substantial shifts in the MIT transition temperatures. This approach can be extended to other judicious combinations of strongly correlated materials
Analysis of the shape of x-ray diffraction peaks originating from the hexatic phase of liquid crystal films
X-ray diffraction studies of the bond-orientational order in the hexatic-B phase of 75OBC and 3(10)OBC compounds are presented. The temperature evolution of an angular profile of a single diffraction peak is analyzed. Close to the hexatic-B–smectic-A transition these profiles can be approximated by the Gaussian function. At lower temperatures in the hexatic-B phase the profiles are better fitted by the Voigt function. Theoretical analysis of the width of diffraction peaks in three-dimentional (3D) hexatics is performed on the basis of the effective Hamiltonian introduced by Aharony and Kardar. Theoretical estimations are in good agreement with the results of x-ray experiments