205,913 research outputs found

    Pseudogap and Mott Transition Studied by Cellular Dynamical Mean Field Theory

    Full text link
    We study metal-insulator transitions between Mott insulators and metals. The transition mechanism completely different from the original dynamical mean field theory (DMFT) emerges from a cluster extension of it. A consistent picture suggests that the quasiparticle weight ZZ remains nonzero through metals and suddenly jumps to zero at the transition, while the gap opens continuously in the insulators. This is in contrast with the original DMFT, where ZZ continuously vanishes but the gap opens discontinuously. The present results arising from electron differentiation in momentum space agree with recent puzzling bulk-sensitive experiments on CaVO3_3 and SrVO3_3.Comment: 5 pages, 4 figure

    Vision-based hand gesture interaction using particle filter, principle component analysis and transition network

    Get PDF
    Vision-based human-computer interaction is becoming important nowadays. It offers natural interaction with computers and frees users from mechanical interaction devices, which is favourable especially for wearable computers. This paper presents a human-computer interaction system based on a conventional webcam and hand gesture recognition. This interaction system works in real time and enables users to control a computer cursor with hand motions and gestures instead of a mouse. Five hand gestures are designed on behalf of five mouse operations: moving, left click, left-double click, right click and no-action. An algorithm based on Particle Filter is used for tracking the hand position. PCA-based feature selection is used for recognizing the hand gestures. A transition network is also employed for improving the accuracy and reliability of the interaction system. This interaction system shows good performance in the recognition and interaction test

    Study of the ionic Peierls-Hubbard model using density matrix renormalization group methods

    Full text link
    Density matrix renormalization group methods are used to investigate the quantum phase diagram of a one-dimensional half-filled ionic Hubbard model with bond-charge attraction, which can be mapped from the Su-Schrieffer-Heeger-type electron-phonon coupling at the antiadiabatic limit. A bond order wave (dimerized) phase which separates the band insulator from the Mott insulator always exists as long as electron-phonon coupling is present. This is qualitatively different from that at the adiabatic limit. Our results indicate that electron-electron interaction, ionic potential and quantum phonon fluctuations combine in the formation of the bond-order wave phase

    Null Result for the Violation of Equivalence Principle with Free-Fall Rotating Gyroscopes

    Get PDF
    The differential acceleration between a rotating mechanical gyroscope and a non-rotating one is directly measured by using a double free-fall interferometer, and no apparent differential acceleration has been observed at the relative level of 2x10{-6}. It means that the equivalence principle is still valid for rotating extended bodies, i.e., the spin-gravity interaction between the extended bodies has not been observed at this level. Also, to the limit of our experimental sensitivity, there is no observed asymmetrical effect or anti-gravity of the rotating gyroscopes as reported by hayasaka et al.Comment: REVTeX 3.0, 7 pages with 4 Postscript figure

    Baryon-meson interactions in chiral quark model

    Full text link
    Using the resonating group method (RGM), we dynamically study the baryon-meson interactions in chiral quark model. Some interesting results are obtained: (1) The Sigma K state has an attractive interaction, which consequently results in a Sigma K quasibound state. When the channel coupling of Sigma K and Lambda K is considered, a sharp resonance appears between the thresholds of these two channels. (2) The interaction of Delta K state with isospin I=1 is attractive, which can make for a Delta K quasibound state. (3) When the coupling to the Lambda K* channel is considered, the N phi is found to be a quasibound state in the extended chiral SU(3) quark model with several MeV binding energy. (4) The calculated S-, P-, D-, and F-wave KN phase shifts achieve a considerable improvement in not only the signs but also the magnitudes in comparison with other's previous quark model study.Comment: 5 pages, 2 figures. Talk given at 3rd Asia Pacific Conference on Few-Body Problems in Physics (APFB05), Korat, Nakhon Ratchasima, Thailand, 26-30 Jul 200

    Single-particle subband structure of Quantum Cables

    Full text link
    We proposed a model of Quantum Cable in analogy to the recently synthesized coaxial nanocable structure [Suenaga et al. Science, 278, 653 (1997); Zhang et al. ibid, 281, 973 (1998)], and studied its single-electron subband structure. Our results show that the subband spectrum of Quantum Cable is different from either double-quantum-wire (DQW) structure in two-dimensional electron gas (2DEG) or single quantum cylinder. Besides the double degeneracy of subbands arisen from the non-abelian mirrow reflection symmetry, interesting quasicrossings (accidental degeneracies), anticrossings and bundlings of Quantum Cable energy subbands are observed for some structure parameters. In the extreme limit (barrier width tends to infinity), the normal degeneracy of subbands different from the DQW structure is independent on the other structure parameters.Comment: 12 pages, 9 figure
    • …
    corecore