102 research outputs found
Non-Gaussian Distributions in Extended Dynamical Systems
We propose a novel mechanism for the origin of non-Gaussian tails in the
probability distribution functions (PDFs) of local variables in nonlinear,
diffusive, dynamical systems including passive scalars advected by chaotic
velocity fields. Intermittent fluctuations on appropriate time scales in the
amplitude of the (chaotic) noise can lead to exponential tails. We provide
numerical evidence for such behavior in deterministic, discrete-time passive
scalar models. Different possibilities for PDFs are also outlined.Comment: 12 pages and 6 figs obtainable from the authors, LaTex file,
OSU-preprint-
Derivative moments in turbulent shear flows
We propose a generalized perspective on the behavior of high-order derivative
moments in turbulent shear flows by taking account of the roles of small-scale
intermittency and mean shear, in addition to the Reynolds number. Two
asymptotic regimes are discussed with respect to shear effects. By these means,
some existing disagreements on the Reynolds number dependence of derivative
moments can be explained. That odd-order moments of transverse velocity
derivatives tend not vanish as expected from elementary scaling considerations
does not necessarily imply that small-scale anisotropy persists at all Reynolds
numbers.Comment: 11 pages, 7 Postscript figure
Efficient Mixing at low Reynolds numbers using polymer additives
Mixing in fluids is a rapidly developing field of fluid mechanics
\cite{Sreen,Shr,War}, being an important industrial and environmental problem.
The mixing of liquids at low Reynolds numbers is usually quite weak in simple
flows, and it requires special devices to be efficient. Recently, the problem
of mixing was solved analytically for a simple case of random flow, known as
the Batchelor regime \cite{Bat,Kraich,Fal,Sig,Fouxon}. Here we demonstrate
experimentally that very viscous liquids at low Reynolds number, . Here we
show that very viscous liquids containing a small amount of high molecular
weight polymers can be mixed quite efficiently at very low Reynolds numbers,
for a simple flow in a curved channel. A polymer concentration of only 0.001%
suffices. The presence of the polymers leads to an elastic instability
\cite{LMS} and to irregular flow \cite{Ours}, with velocity spectra
corresponding to the Batchelor regime \cite{Bat,Kraich,Fal,Sig,Fouxon}. Our
detailed observations of the mixing in this regime enable us to confirm sevearl
important theoretical predictions: the probability distributions of the
concentration exhibit exponential tails \cite{Fal,Fouxon}, moments of the
distribution decay exponentially along the flow \cite{Fouxon}, and the spatial
correlation function of concentration decays logarithmically.Comment: 11 pages, 5 figure
Anisotropic Homogeneous Turbulence: hierarchy and intermittency of scaling exponents in the anisotropic sectors
We present the first measurements of anisotropic statistical fluctuations in
perfectly homogeneous turbulent flows. We address both problems of
intermittency in anisotropic sectors and hierarchical ordering of anisotropies
on a direct numerical simulation of a three dimensional random Kolmogorov flow.
We achieved an homogeneous and anisotropic statistical ensemble by randomly
shifting the forcing phases. We observe high intermittency as a function of the
order of the velocity correlation within each fixed anisotropic sector and a
hierarchical organization of scaling exponents at fixed order of the velocity
correlation at changing the anisotropic sector.Comment: 6 pages, 3 eps figure
Beyond scaling and locality in turbulence
An analytic perturbation theory is suggested in order to find finite-size
corrections to the scaling power laws. In the frame of this theory it is shown
that the first order finite-size correction to the scaling power laws has
following form , where
is a finite-size scale (in particular for turbulence, it can be the Kolmogorov
dissipation scale). Using data of laboratory experiments and numerical
simulations it is shown shown that a degenerate case with can
describe turbulence statistics in the near-dissipation range , where
the ordinary (power-law) scaling does not apply. For moderate Reynolds numbers
the degenerate scaling range covers almost the entire range of scales of
velocity structure functions (the log-corrections apply to finite Reynolds
number). Interplay between local and non-local regimes has been considered as a
possible hydrodynamic mechanism providing the basis for the degenerate scaling
of structure functions and extended self-similarity. These results have been
also expanded on passive scalar mixing in turbulence. Overlapping phenomenon
between local and non-local regimes and a relation between position of maximum
of the generalized energy input rate and the actual crossover scale between
these regimes are briefly discussed.Comment: extended versio
A non-hybrid method for the PDF equations of turbulent flows on unstructured grids
In probability density function (PDF) methods of turbulent flows, the joint
PDF of several flow variables is computed by numerically integrating a system
of stochastic differential equations for Lagrangian particles. A set of
parallel algorithms is proposed to provide an efficient solution of the PDF
transport equation, modeling the joint PDF of turbulent velocity, frequency and
concentration of a passive scalar in geometrically complex configurations. An
unstructured Eulerian grid is employed to extract Eulerian statistics, to solve
for quantities represented at fixed locations of the domain (e.g. the mean
pressure) and to track particles. All three aspects regarding the grid make use
of the finite element method (FEM) employing the simplest linear FEM shape
functions. To model the small-scale mixing of the transported scalar, the
interaction by exchange with the conditional mean model is adopted. An adaptive
algorithm that computes the velocity-conditioned scalar mean is proposed that
homogenizes the statistical error over the sample space with no assumption on
the shape of the underlying velocity PDF. Compared to other hybrid
particle-in-cell approaches for the PDF equations, the current methodology is
consistent without the need for consistency conditions. The algorithm is tested
by computing the dispersion of passive scalars released from concentrated
sources in two different turbulent flows: the fully developed turbulent channel
flow and a street canyon (or cavity) flow. Algorithmic details on estimating
conditional and unconditional statistics, particle tracking and particle-number
control are presented in detail. Relevant aspects of performance and
parallelism on cache-based shared memory machines are discussed.Comment: Accepted in Journal of Computational Physics, Feb. 20, 200
Generation of Large-Scale Vorticity in a Homogeneous Turbulence with a Mean Velocity Shear
An effect of a mean velocity shear on a turbulence and on the effective force
which is determined by the gradient of Reynolds stresses is studied. Generation
of a mean vorticity in a homogeneous incompressible turbulent flow with an
imposed mean velocity shear due to an excitation of a large-scale instability
is found. The instability is caused by a combined effect of the large-scale
shear motions (''skew-induced" deflection of equilibrium mean vorticity) and
''Reynolds stress-induced" generation of perturbations of mean vorticity.
Spatial characteristics, such as the minimum size of the growing perturbations
and the size of perturbations with the maximum growth rate, are determined.
This instability and the dynamics of the mean vorticity are associated with the
Prandtl's turbulent secondary flows. This instability is similar to the
mean-field magnetic dynamo instability. Astrophysical applications of the
obtained results are discussed.Comment: 8 pages, 3 figures, REVTEX4, submitted to Phys. Rev.
Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?
Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity
and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction
Kinetic Energy Decay Rates of Supersonic and Super-Alfvenic Turbulence in Star-Forming Clouds
We present numerical studies of compressible, decaying turbulence, with and
without magnetic fields, with initial rms Alfven and Mach numbers ranging up to
five, and apply the results to the question of the support of star-forming
interstellar clouds of molecular gas. We find that, in 1D, magnetized
turbulence actually decays faster than unmagnetized turbulence. In all the
regimes that we have studied 3D turbulence-super-Alfvenic, supersonic,
sub-Alfvenic, and subsonic-the kinetic energy decays as (t-t0)^(-x), with 0.85
< x < 1.2. We compared results from two entirely different algorithms in the
unmagnetized case, and have performed extensive resolution studies in all
cases, reaching resolutions of 256^3 zones or 350,000 particles. We conclude
that the observed long lifetimes and supersonic motions in molecular clouds
must be due to external driving, as undriven turbulence decays far too fast to
explain the observations.Comment: Submitted to Phys. Rev. Letters, 29 Nov. 1997. 10 pages, 2 figures,
also available from http://www.mpia-hd.mpg.de/theory/preprints.html#maclo
Turbulence anisotropy and the SO(3) description
We study strongly turbulent windtunnel flows with controlled anisotropy. Using a recent formalism based on angular momentum and the irreducible representations of the SO(3) rotation group, we attempt to extract this anisotropy from the angular dependence of second-order structure functions. Our instrumentation allows a measurement of both the separation and the angle dependence of the structure function. In axisymmetric turbulence which has a weak anisotropy, this more extended information produces ambiguous results. In more strongly anisotropic shear turbulence, the SO(3) description enables one to find the anisotropy scaling exponent. The key quality of the SO(3) description is that structure functions are a mixture of algebraic functions of the scale with exponents ordered such that the contribution of anisotropies diminishes at small scales. However, we find that in third-order structure functions of homogeneous shear turbulence the anisotropic contribution is always large and of the same order of magnitude as the isotropic part. Our results concern the minimum instrumentation needed to determine the parameters of the SO(3) description, and raise several questions about its ability to describe the angle dependence of high-order structure functions
- …