449 research outputs found

    Superconductivity emerging from an electronic phase separation in the charge ordered phase of RbFe2_2As2_2

    Full text link
    75^{75}As, 87^{87}Rb and 85^{85}Rb nuclear quadrupole resonance (NQR) and 87^{87}Rb nuclear magnetic resonance (NMR) measurements in RbFe2_2As2_2 iron-based superconductor are presented. We observe a marked broadening of 75^{75}As NQR spectrum below T0140T_0\simeq 140 K which is associated with the onset of a charge order in the FeAs planes. Below T0T_0 we observe a power-law decrease in 75^{75}As nuclear spin-lattice relaxation rate down to T20T^*\simeq 20 K. Below that temperature the nuclei start to probe different dynamics owing to the different local electronic configurations induced by the charge order. A fraction of the nuclei probes spin dynamics associated with electrons approaching a localization while another fraction probes activated dynamics possibly associated with a pseudogap. These different trends are discussed in the light of an orbital selective behaviour expected for the electronic correlations.Comment: 5 pages, 3 figures and 4 pages of supplemental materia

    Raman scattering study of spin-density-wave-induced anisotropic electronic properties in AFe2As2 (A=Ca,Eu)

    Full text link
    We present a polarization-resolved and temperature-dependent Raman scattering study of AFe2As2 (A = Ca, Eu). In the spin-density-wave (SDW) phase, spectral weight redistribution is observed in the fully symmetric and non-symmetric scattering channels at different energies. An anisotropic Raman response is observed in the fully symmetric channel in spontaneously detwinned CaFe2As2 samples. We calculate the orbital-resolved electronic structures using a combination of density functional theory and dynamical mean field theory (DFT+DMFT). We identify the electronic transitions corresponding to these two spectral features and find that the anisotropic Raman response originates from the lifted degeneracy of the dxz/yz orbitals in the broken symmetry phase.Comment: 7 pages, 5 figure

    Magnetic structure of superconducting Eu(Fe0.82Co0.18)2As2 as revealed by single-crystal neutron diffraction

    Get PDF
    The magnetic structure of superconducting Eu(Fe0.82Co0.18)2As2 is unambiguously determined by single-crystal neutron diffraction. A long-range ferromagnetic order of the Eu2+ moments along the c-direction is revealed below the magnetic phase transition temperature Tc = 17 K. In addition, the antiferromagnetism of the Fe2+ moments still survives and the tetragonal-to-orthorhombic structural phase transition is also observed, although the transition temperatures of the Fe-spin density wave (SDW) order and the structural phase transition are significantly suppressed to Tn = 70 K and Ts = 90 K, respectively, compared to the parent compound EuFe2As2.We present the microscopic evidences for the coexistence of the Eu-ferromagnetism (FM) and the Fe-SDW in the superconducting crystal. The superconductivity (SC) competes with the Fe-SDW in Eu(Fe0.82Co0.18)2As2.Moreover, the comparison between Eu(Fe1-xCox)2As2 and Ba(Fe1-xCox)2As2 indicates a considerable influence of the rare-earth element Eu on the magnetism of the Fe sublattice.Comment: 7 pages, 7 figures, accepted for publication in Physical Review

    Electron-Phonon Interaction in Ternary Rare-Earth Copper Antimonides LaCuSb2 and La(Cu0.8Ag0.2)Sb2 probed by Yanson Point-Contact Spectroscopy

    Full text link
    Investigation of the electron-phonon interaction (EPI) in LaCuSb2 and La(Cu0.8Ag0.2)Sb2 compounds by Yanson point-contact spectroscopy (PCS) has been carried out. Point-contact spectra display a pronounced broad maximum in the range of 10{\div}20 mV caused by EPI. Variation of the position of this maximum is likely connected with anisotropic phonon spectrum in these layered compounds. The absence of phonon features after the main maximum allows the assessment of the Debye energy of about 40 meV. The EPI constant for the LaCuSb2 compound was estimated to be {\lambda}=0.2+/-0.03. A zero-bias minimum in differential resistance for the latter compound is observed for some point contacts, which vanishes at about 6 K, pointing to the formation of superconducting phase under point contact, while superconducting critical temperature of the bulk sample is only 1K.Comment: 4 two-column pages, 5 figures, published in the "Proceedings of the 2017 IEEE 7-th International Conference on Nanomaterials: Applications & Properties", September 10-15, 2017, Zatoka, Ukrain

    Multi-band superconductivity in LaFeAsO_{0.9}F_{0.1} single crystals probed by high-field vortex torque magnetometry

    Full text link
    To probe manifestations of multiband superconductivity in oxypnictides, we measured the angular dependence of the magnetic torque τ(θ)\tau(\theta) in the mixed state of LaO0.9_{0.9}F0.1_{0.1}FeAs single crystals as a function of temperature TT and magnetic fields HH up to 18 T. The paramagnetic contribution of the Fe ions is properly treated in order to extract the effective mass anisotropy parameter γ=(mc/mab)1/2\gamma=(m_c/m_{ab})^{1/2} from τ(θ)\tau(\theta). We show that γ\gamma depends strongly on both TT and HH, reaching a maximum value of \sim 10 followed by a decrease towards values close to 1 as TT is lowered. The observed field dependencies of the London penetration depth λab\lambda_{ab} and γ\gamma suggest the onset of suppression of a superconducing gap at HHc2/3H \approx H_{c2}/3.Comment: 7 pages, 7 figure

    Probing the pairing symmetry in the over-doped Fe-based superconductor Ba_0.35Rb_0.65Fe_2As_2 as a function of hydrostatic pressure

    Full text link
    We report muon spin rotation experiments on the magnetic penetration depth lambda and the temperature dependence of lambda^{-2} in the over-doped Fe-based high-temperature superconductor (Fe-HTS) Ba_{1-x}Rb_ xFe_2As_2 (x = 0.65) studied at ambient and under hydrostatic pressures up to p = 2.3 GPa. We find that in this system lambda^{-2}(T) is best described by d-wave scenario. This is in contrast to the case of the optimally doped x = 0.35 system which is known to be a nodeless s^{+-}-wave superconductor. This suggests that the doping induces the change of the pairing symmetry from s^{+-} to d-wave in Ba_{1-x}Rb_{x}Fe_{2}As_{2}. In addition, we find that the d-wave order parameter is robust against pressure, suggesting that d is the common and dominant pairing symmetry in over-doped Ba_{1-x}Rb_{x}Fe_{2}As_{2}. Application of pressure of p = 2.3 GPa causes a decrease of lambda(0) by less than 5 %, while at optimal doping x = 0.35 a significant decrease of lambda(0) was reported. The superconducting transition temperature T_c as well as the gap to T_c ratio 2Delta/k_BT_c show only a modest decrease with pressure. By combining the present data with those previously obtained for optimally doped system x = 0.35 and for the end member x = 1 we conclude that the SC gap symmetry as well as the pressure effects on the SC quantities strongly depend on the Rb doping level. These results are discussed in the light of the putative Lifshitz transition, i.e., a disappearance of the electron pockets in the Fermi surface of Ba_{1-x}Rb_{x}Fe_{2}As_{2} upon hole doping.Comment: Accepted for publication in Physical Review

    Hydrostatic pressure effects on the static magnetism in Eu(Fe0.925_{0.925}Co0.075_{0.075})2_{2}As2_{2}

    Full text link
    The effects of hydrostatic pressure on the static magnetism in Eu(Fe0.925_{0.925}Co0.075_{0.075})2_{2}As2_{2} are investigated by complementary electrical resistivity, ac magnetic susceptibility and single-crystal neutron diffraction measurements. A specific pressure-temperature phase diagram of Eu(Fe0.925_{0.925}Co0.075_{0.075})2_{2}As2_{2} is established. The structural phase transition, as well as the spin-density-wave order of Fe sublattice, is suppressed gradually with increasing pressure and disappears completely above 2.0 GPa. In contrast, the magnetic order of Eu sublattice persists over the whole investigated pressure range up to 14 GPa, yet displaying a non-monotonic variation with pressure. With the increase of the hydrostatic pressure, the magnetic state of Eu evolves from the canted antiferromagnetic structure in the ground state, via a pure ferromagnetic structure under the intermediate pressure, finally to a possible "novel" antiferromagnetic structure under the high pressure. The strong ferromagnetism of Eu coexists with the pressure-induced superconductivity around 2 GPa. The change of the magnetic state of Eu in Eu(Fe0.925_{0.925}Co0.075_{0.075})2_{2}As2_{2} upon the application of hydrostatic pressure probably arises from the modification of the indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the Eu2+^{2+} moments tuned by external pressure.Comment: 9 pages, 6 figure
    corecore