2 research outputs found

    Synthesis of C2-Carbonyl Indoles via Visible Light-Induced Oxidative Cleavage of an Aminomethylene Group

    No full text
    A strategy for photochemical oxidative cleavage of the aminomethylene group at the C2 position of indole was developed to synthesize C2-carbonyl indoles. The reaction was initiated by the photochemical oxidation of N1, followed by a water-assisted concerted H-shift by abstracting hydrogen from aminomethylene. Bromopyridine was discovered to play dual roles as an oxidant for the regeneration of photocatalysts and as an accelerant for the single-electron transfer process

    Table_1_Evaluating large language models on a highly-specialized topic, radiation oncology physics.pdf

    No full text
    PurposeWe present the first study to investigate Large Language Models (LLMs) in answering radiation oncology physics questions. Because popular exams like AP Physics, LSAT, and GRE have large test-taker populations and ample test preparation resources in circulation, they may not allow for accurately assessing the true potential of LLMs. This paper proposes evaluating LLMs on a highly-specialized topic, radiation oncology physics, which may be more pertinent to scientific and medical communities in addition to being a valuable benchmark of LLMs.MethodsWe developed an exam consisting of 100 radiation oncology physics questions based on our expertise. Four LLMs, ChatGPT (GPT-3.5), ChatGPT (GPT-4), Bard (LaMDA), and BLOOMZ, were evaluated against medical physicists and non-experts. The performance of ChatGPT (GPT-4) was further explored by being asked to explain first, then answer. The deductive reasoning capability of ChatGPT (GPT-4) was evaluated using a novel approach (substituting the correct answer with “None of the above choices is the correct answer.”). A majority vote analysis was used to approximate how well each group could score when working together.ResultsChatGPT GPT-4 outperformed all other LLMs and medical physicists, on average, with improved accuracy when prompted to explain before answering. ChatGPT (GPT-3.5 and GPT-4) showed a high level of consistency in its answer choices across a number of trials, whether correct or incorrect, a characteristic that was not observed in the human test groups or Bard (LaMDA). In evaluating deductive reasoning ability, ChatGPT (GPT-4) demonstrated surprising accuracy, suggesting the potential presence of an emergent ability. Finally, although ChatGPT (GPT-4) performed well overall, its intrinsic properties did not allow for further improvement when scoring based on a majority vote across trials. In contrast, a team of medical physicists were able to greatly outperform ChatGPT (GPT-4) using a majority vote.ConclusionThis study suggests a great potential for LLMs to work alongside radiation oncology experts as highly knowledgeable assistants.</p
    corecore