2 research outputs found

    Silicon Quantum Dots in Dielectric Scattering Media: Broadband Enhancement of Effective Absorption Cross Section by Light Trapping

    No full text
    We report strong enhancements of the effective absorption cross section and photoluminescence (PL) intensity of silicon quantum dots (Si QDs) with 2.8–6.8 nm in diameter in a highly scattering dielectric medium. The scattering medium is a polymer thin film with submicrometer size pores inside, supporting the resonant cavity modes in the visible range. By the scattering associated with the cavity modes, efficient light trapping into a polymer film with ∼1 μm in thickness is achieved, which leads to 30–40 times enhancement of the effective absorption cross section of embedded Si QDs in a green–red wavelength range. The scattering medium can also enhance up to 40 times the PL of QDs. Detailed analysis reveals that the enhancements of the extraction efficiency as well as the excitation efficiency contribute to the PL enhancement

    Overpotential-Induced Introduction of Oxygen Vacancy in La<sub>0.67</sub>Sr<sub>0.33</sub>MnO<sub>3</sub> Surface and Its Impact on Oxygen Reduction Reaction Catalytic Activity in Alkaline Solution

    No full text
    Oxygen reduction reaction (ORR) catalytic activity of La<sub>0.67</sub>Sr<sub>0.33</sub>MnO<sub>3</sub> epitaxial thin films was investigated in a KOH solution by using a rotating-disk electrode. We found that while the films exhibit ORR current, the current is not limited by oxygen transport resulting from the film electrode rotation and shows the large hysteresis against the potential sweep direction. This behavior is in stark contrast to the oxygen reduction reaction activity of an electrode ink made from LSMO bulk powder, whose ORR current is oxygen-transport limited. <i>In situ</i> synchrotron X-ray absorption spectroscopy also reveals that the valence state of Mn in the LSMO film surface is lowered under the reducing atmosphere caused by the overpotential. This indicates the overpotential-induced introduction of oxygen vacancies in the film surface. We also show that the ORR current of the LSMO films exposed to the reducing atmosphere is lowered than that of the original surface. These results indicate that the ORR catalytic activity of LSMO surfaces is strongly influenced by oxygen vacancies
    corecore