4 research outputs found
Unexpected Promotion Effect of H<sub>2</sub>O on the Selective Catalytic Reduction of NO<sub><i>x</i></sub> with NH<sub>3</sub> over Cu-SSZ-39 Catalysts
Water molecules commonly inhibit the selective catalytic
reduction
(SCR) of NOx with NH3 on most
catalysts, and water resistance is a long-standing challenge for SCR
technology. Herein, by combining experimental measurements and density
functional theory (DFT) calculations, we found that water molecules
do not inhibit and even promote the NOx conversion to some extent over the Cu-SSZ-39 zeolites, a promising
SCR catalyst. Water acting as a ligand on active Cu sites and as a
reactant in the SCR reaction significantly improves the O2 activation performance and reduces the overall energy barrier of
the catalytic cycle. This work unveils the mechanism of the unexpected
promotion effect of water on the NH3–SCR reaction
over Cu-SSZ-39 and provides fundamental insight into the development
of zeolite-based SCR catalysts with excellent activity and water resistance
Spatial Distribution of Brønsted Acid Sites Determines the Mobility of Reactive Cu Ions in the Cu-SSZ-13 Catalyst during the Selective Catalytic Reduction of NO<sub><i>x</i></sub> with NH<sub>3</sub>
The formation of dimer-Cu species, which serve as the
active sites
of the low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR), relies
on the mobility of CuI species in the channels of the Cu-SSZ-13
catalysts. Herein, the key role of framework Brønsted acid sites
in the mobility of reactive Cu ions was elucidated via a combination
of density functional theory calculations, in situ impedance spectroscopy, and in situ diffuse reflectance
ultraviolet–visible spectroscopy. When the number of framework
Al sites decreases, the Brønsted acid sites decrease, leading
to a systematic increase in the diffusion barrier for [CuÂ(NH3)2]+ and less formation of highly reactive
dimer-Cu species, which inhibits the low-temperature NH3-SCR reactivity and vice versa. When the spatial distribution of
Al sites is uneven, the [CuÂ(NH3)2]+ complexes tend to migrate from an Al-poor cage to an Al-rich cage
(e.g., cage with paired Al sites), which effectively accelerates the
formation of dimer-Cu species and hence promotes the SCR reaction.
These findings unveil the mechanism by which framework Brønsted
acid sites influence the intercage diffusion and reactivity of [CuÂ(NH3)2]+ complexes in Cu-SSZ-13 catalysts
and provide new insights for the development of zeolite-based catalysts
with excellent SCR activity by regulating the microscopic spatial
distribution of framework Brønsted acid sites
Spatial Distribution of Brønsted Acid Sites Determines the Mobility of Reactive Cu Ions in the Cu-SSZ-13 Catalyst during the Selective Catalytic Reduction of NO<sub><i>x</i></sub> with NH<sub>3</sub>
The formation of dimer-Cu species, which serve as the
active sites
of the low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR), relies
on the mobility of CuI species in the channels of the Cu-SSZ-13
catalysts. Herein, the key role of framework Brønsted acid sites
in the mobility of reactive Cu ions was elucidated via a combination
of density functional theory calculations, in situ impedance spectroscopy, and in situ diffuse reflectance
ultraviolet–visible spectroscopy. When the number of framework
Al sites decreases, the Brønsted acid sites decrease, leading
to a systematic increase in the diffusion barrier for [CuÂ(NH3)2]+ and less formation of highly reactive
dimer-Cu species, which inhibits the low-temperature NH3-SCR reactivity and vice versa. When the spatial distribution of
Al sites is uneven, the [CuÂ(NH3)2]+ complexes tend to migrate from an Al-poor cage to an Al-rich cage
(e.g., cage with paired Al sites), which effectively accelerates the
formation of dimer-Cu species and hence promotes the SCR reaction.
These findings unveil the mechanism by which framework Brønsted
acid sites influence the intercage diffusion and reactivity of [CuÂ(NH3)2]+ complexes in Cu-SSZ-13 catalysts
and provide new insights for the development of zeolite-based catalysts
with excellent SCR activity by regulating the microscopic spatial
distribution of framework Brønsted acid sites
Spatial Distribution of Brønsted Acid Sites Determines the Mobility of Reactive Cu Ions in the Cu-SSZ-13 Catalyst during the Selective Catalytic Reduction of NO<sub><i>x</i></sub> with NH<sub>3</sub>
The formation of dimer-Cu species, which serve as the
active sites
of the low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR), relies
on the mobility of CuI species in the channels of the Cu-SSZ-13
catalysts. Herein, the key role of framework Brønsted acid sites
in the mobility of reactive Cu ions was elucidated via a combination
of density functional theory calculations, in situ impedance spectroscopy, and in situ diffuse reflectance
ultraviolet–visible spectroscopy. When the number of framework
Al sites decreases, the Brønsted acid sites decrease, leading
to a systematic increase in the diffusion barrier for [CuÂ(NH3)2]+ and less formation of highly reactive
dimer-Cu species, which inhibits the low-temperature NH3-SCR reactivity and vice versa. When the spatial distribution of
Al sites is uneven, the [CuÂ(NH3)2]+ complexes tend to migrate from an Al-poor cage to an Al-rich cage
(e.g., cage with paired Al sites), which effectively accelerates the
formation of dimer-Cu species and hence promotes the SCR reaction.
These findings unveil the mechanism by which framework Brønsted
acid sites influence the intercage diffusion and reactivity of [CuÂ(NH3)2]+ complexes in Cu-SSZ-13 catalysts
and provide new insights for the development of zeolite-based catalysts
with excellent SCR activity by regulating the microscopic spatial
distribution of framework Brønsted acid sites