14 research outputs found

    Presentation_1_Modulations of bioactive lipids and their receptors in postmortem Alzheimer’s disease brains.PDF

    No full text
    BackgroundAnalyses of brain samples from Alzheimer’s disease (AD) patients may be expected to help us improve our understanding of the pathogenesis of AD. Bioactive lipids, including sphingolipids, glycerophospholipids, and eicosanoids/related mediators have been demonstrated to exert potent physiological actions and to be involved in the pathogenesis of various human diseases. In this cross-sectional study, we attempted to elucidate the associations of these bioactive lipids with the pathogenesis/pathology of AD through postmortem studies of human brains.MethodsWe measured the levels of glycerophospholipids, sphingolipids, and eicosanoids/related mediators in the brains of patients with AD (AD brains), patients with Cerad score B (Cerad-b brains), and control subjects (control brains), using a liquid chromatography-mass spectrometry method; we also measured the mRNA levels of specific receptors for these bioactive lipids in the same brain specimens.ResultsThe levels of several species of sphingomyelins and ceramides were higher in the Cerad-b and AD brains. Levels of several species of lysophosphatidic acids (LPAs), lysophosphatidylcholine, lysophosphatidylserine, lysophosphatidylethanolamine (LPE), lysophosphatidylinositol, phosphatidylcholine, phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol, and phosphatidylglycerol were especially high in the Cerad-b brains, while those of lysophosphatidylglycerol (LPG) were especially high in the AD brains. Several eicosanoids, including metabolites of prostaglandin E2, oxylipins, metabolites of epoxide, and metabolites of DHA and EPA, such as resolvins, were also modulated in the AD brains. Among the lipid mediators, the levels of S1P2, S1P5, LPA1, LPA2, LPA6, P2Y10, GPR174, EP1, DP1, DP2, IP, FP, and TXA2r were lower in the AD and/or Cerad-b brains. The brain levels of ceramides, LPC, LPI, PE, and PS showed strong positive correlations with the Aβ contents, while those of LPG showed rather strong positive correlations with the presence of senile plaques and neurofibrillary tangles. A discriminant analysis revealed that LPG is especially important for AD and the LPE/PE axis is important for Cerad-b.ConclusionsComprehensive lipidomics, together with the measurement of lipid receptor expression levels provided novel evidence for the associations of bioactive lipids with AD, which is expected to facilitate future translational research and reverse translational research.</p

    Recent Advancements in Pyrolysis of Halogen-Containing Plastics for Resource Recovery and Halogen Upcycling: A State-of-the-Art Review

    No full text
    Plastic waste has emerged as a serious issue due to its impact on environmental degradation and resource scarcity. Plastic recycling, especially of halogen-containing plastics, presents challenges due to potential secondary pollution and lower-value implementations. Chemical recycling via pyrolysis is the most versatile and robust approach for combating plastic waste. In this Review, we present recent advancements in halogen-plastic pyrolysis for resource utilization and the potential pathways from “reducing to recycling to upcycling” halogens. We emphasize the advanced management of halogen-plastics through copyrolysis with solid wastes (waste polymers, biomass, coal, etc.), which is an efficient method for dealing with mixed wastes to obtain high-value products while reducing undesirable substances. Innovations in catalyst design and reaction configurations for catalytic pyrolysis are comprehensively evaluated. In particular, a tandem catalysis system is a promising route for halogen removal and selective conversion of targeted products. Furthermore, we propose novel insights regarding the utilization and upcycling of halogens from halogen-plastics. This includes the preparation of halogen-based sorbents for elemental mercury removal, the halogenation–vaporization process for metal recovery, and the development of halogen-doped functional materials for new materials and energy applications. The reutilization of halogens facilitates the upcycling of halogen-plastics, but many efforts are needed for mutually beneficial outcomes. Overall, future investigations in the development of copyrolysis and catalyst-driven technologies for upcycling halogen-plastics are highlighted

    Additional file 2: Table S1. of Serum microRNA miR-501-3p as a potential biomarker related to the progression of Alzheimer’s disease

    No full text
    Top 20 deregulated serum miRNAs that were identified by NGS in the ROW discovery set after adjusting for age, sex, APOE genotype, and hemolysis ratio. Table S2. Significantly deregulated miRNAs that were identified by NGS in the temporal cortex of the ROW discovery set. Table S3. Significantly deregulated miRNAs that were identified by NGS in the temporal cortex of the ROW discovery set after adjusting for age, sex, APOE genotype, and RIN. Table S4. Significantly differentially expressed genes that were identified by NGS in hsa-miR-501-3p overexpression in cultured cells. Table S5. Gene Ontology enrichment analysis on the significantly downregulated genes in hsa-miR-501-3p overexpression in cultured cells. Table S6. Gene Ontology enrichment analysis on the significantly upregulated genes in hsa-miR-501-3p overexpression in cultured cells. (XLS 172 kb

    Homovanillic acid and 5-hydroxyindole acetic acid as biomarkers for dementia with Lewy bodies and coincident Alzheimer’s disease: An autopsy-confirmed study

    No full text
    <div><p>Dementia with Lewy bodies (DLB) and Alzheimer’s disease (AD) are the two most common causes of dementia. Both pathologies often coexist, and AD patients with concomitant neocortical LB pathology (referred to as the Lewy body variant of AD) generally show faster cognitive decline and accelerated mortality relative to patients with pure AD. Thus, discriminating among patients with DLB, AD, and coincident DLB and AD is important in clinical practice. We examined levels of homovanillic acid (HVA), 5-hydroxyindole acetic acid (5-HIAA), tau, phosphorylated tau (p-tau), and beta-amyloid (Aβ) 1–42 in cerebrospinal fluid (CSF) to evaluate their viability as biomarkers to discriminate among different forms of dementia. We obtained a total of 3498 CSF samples from patients admitted to our hospital during the period from 1996 to 2015. Of these patients, we were able to carry out a brain autopsy in 94 cases. Finally, 78 neuropathologically diagnosed cases (10 AD, six DLB, five DLB with AD, five controls without neurological diseases, and 52 cases with other neurological diseases) were studied. CSF levels of HVA and 5-HIAA were consistently decreased in pathologically advanced Lewy body disorder (LBD; Braak LB stages >3) compared with pathologically incipient LBD (Braak LB stages <2). These results suggest that if an individual has LB pathology in the central nervous system, CSF levels of HVA and 5-HIAA may decrease after the onset of clinical symptoms. In addition, CSF levels of HVA and 5-HIAA decreased with LB pathology, and were especially low in cases of DLB and DLB with AD. Furthermore, the combination of HVA, 5-HIAA, and brain specific proteins t-tau, p-tau, and Aβ 1–42 in CSF were useful for discriminating among DLB, DLB with AD, and AD with high diagnostic accuracy.</p></div

    Data_Sheet_1_Elevation of inositol pyrophosphate IP7 in the mammalian spinal cord of amyotrophic lateral sclerosis.pdf

    No full text
    BackgroundAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder associated with progressive impairment of spinal motor neurons. Continuous research endeavor is underway to fully understand the molecular mechanisms associating with this disorder. Although several studies have implied the involvement of inositol pyrophosphate IP7 in ALS, there is no direct experimental evidence proving this notion. In this study, we analyzed inositol pyrophosphate IP7 and its precursor IP6 in the mouse and human ALS biological samples to directly assess whether IP7 level and/or its metabolism are altered in ALS disease state.MethodsWe used a liquid chromatography-mass spectrometry (LC-MS) protocol originally-designed for mammalian IP6 and IP7 analysis. We measured the abundance of these molecules in the central nervous system (CNS) of ALS mouse model SOD1(G93A) transgenic (TG) mice as well as postmortem spinal cord of ALS patients. Cerebrospinal fluid (CSF) and peripheral blood mononuclear cells (PBMCs) from ALS patients were also analyzed to assess if IP7 status in these biofluids is associated with ALS disease state.ResultsSOD1(G93A) TG mice showed significant increase of IP7 level in the spinal cord compared with control mice at the late stage of disease progression, while its level in cerebrum and cerebellum remains constant. We also observed significantly elevated IP7 level and its product-to-precursor ratio (IP7/IP6) in the postmortem spinal cord of ALS patients, suggesting enhanced enzymatic activity of IP7-synthesizing kinases in the human ALS spinal cord. In contrast, human CSF did not contain detectable level of IP6 and IP7, and neither the IP7 level nor the IP7/IP6 ratio in human PBMCs differentiated ALS patients from age-matched healthy individuals.ConclusionBy directly analyzing IP7 in the CNS of ALS mice and humans, the findings of this study provide direct evidence that IP7 level and/or the enzymatic activity of IP7-generating kinases IP6Ks are elevated in ALS spinal cord. On the other hand, this study also showed that IP7 is not suitable for biofluid-based ALS diagnosis. Further investigation is required to elucidate a role of IP7 in ALS pathology and utilize IP7 metabolism on the diagnostic application of ALS.</p

    CSF levels of homovanillic acid (HVA) and 5-hydroxyindole acetic acid (5-HIAA).

    No full text
    <p>5-HIAA levels in the pathologically advanced Lewy body disorder (LBD) group (Braak LB stages ≥3) decreased significantly compared with those in the pathologically incipient LBD groups (Braak LB stages ≤2), as assessed with Student’s <i>t</i> test. Error bars represent the standard deviations and the bottom, middle, and top lines of the box represent the 25th, 50th (median), and 75th percentiles, respectively. *, <i>p</i> < .05.</p
    corecore