7 research outputs found

    Mitigating China’s Ozone Pollution with More Balanced Health Benefits

    No full text
    China is confronting the challenge of opposite health benefits (OHBs) during ambient ozone (O3) mitigation because the same reduction scheme might yield opposite impacts on O3 levels and associated public health across different regions. Here, we used a combination of chemical transport modeling, health benefit assessments, and machine learning to capture such OHBs and optimize O3 mitigation pathways based on 121 control scenarios. We revealed that, for the China mainland, Beijing–Tianjin–Hebei and its surroundings (“2 + 26” cities), Yangtze River Delta, and Pearl River Delta, there could be at most 2897, 920, 1247, and 896 additional O3-related deaths in urban areas, respectively, accompanying 21,512, 3442, 5614, and 642 avoided O3-related deaths in rural areas, respectively, at the same control stage. Additionally, potential disbenefits during O3 mitigation were “pro-wealthy”, that is, residents in developed regions are more likely to afford additional health risks. In order to avoid OHBs during O3 abatement, we proposed a two-phase control strategy, whereby the reduction ratio of NOX (nitrogen oxide) to VOCs (volatile organic compounds) was adjusted according to health benefit distribution patterns. Our study provided novel insights into China’s O3 attainment and references for other countries facing the dual challenges of environmental pollution and associated inequality issues

    Variations and Sources of Organic Aerosol in Winter Beijing under Markedly Reduced Anthropogenic Activities During COVID-2019

    No full text
    The COVID-19 outbreak provides a “controlled experiment” to investigate the response of aerosol pollution to the reduction of anthropogenic activities. Here we explore the chemical characteristics, variations, and emission sources of organic aerosol (OA) based on the observation of air pollutants and combination of aerosol mass spectrometer (AMS) and positive matrix factorization (PMF) analysis in Beijing in early 2020. By eliminating the impacts of atmospheric boundary layer and the Spring Festival, we found that the lockdown effectively reduced cooking-related OA (COA) but influenced fossil fuel combustion OA (FFOA) very little. In contrast, both secondary OA (SOA) and O3 formation was enhanced significantly after lockdown: less-oxidized oxygenated OA (LO-OOA, 37% in OA) was probably an aged product from fossil fuel and biomass burning emission with aqueous chemistry being an important formation pathway, while more-oxidized oxygenated OA (MO-OOA, 41% in OA) was affected by regional transport of air pollutants and related with both aqueous and photochemical processes. Combining FFOA and LO-OOA, more than 50% of OA pollution was attributed to combustion activities during the whole observation period. Our findings highlight that fossil fuel/biomass combustion are still the largest sources of OA pollution, and only controlling traffic and cooking emissions cannot efficiently eliminate the heavy air pollution in winter Beijing

    Trends of Full-Volatility Organic Emissions in China from 2005 to 2019 and Their Organic Aerosol Formation Potentials

    No full text
    Emissions of organic compounds have strong influences on the environment. Most previous emission inventories only cover the emissions of particulate organic carbon and nonmethane volatile organic compounds (NMVOC) but neglect the semivolatile and intermediate volatile organic compounds (S/IVOC), which considerably contribute to the organic aerosol (OA) burden. Herein, we developed a full-volatility emission inventory of organic compounds in China from 2005 to 2019 and analyzed the OA formation potential (OAFP) of each volatility bin and source using a two-dimensional volatility basis set (2D-VBS) box model. The emissions of low/extremely low/ultralow VOC (xLVOC) decreased substantially during 2005–2019, while the emissions of SVOC showed significant decline after 2014, mainly because of reduced residential biomass consumption. IVOC and VOC emission amounts in 2019 were similar to those in 2005; however, the major sources of emissions changed substantially. Emissions from volatile chemical products (VCP) increased significantly and became the dominant source of IVOC and VOC emissions. The S/IVOC from VCP contributed 1322 kt of OAFP in 2019, higher than the total anthropogenic xLVOC emissions. Considering the high of S/IVOC, future air pollution control policies should prioritize VCP, residential biomass burning, and diesel vehicles

    Drivers of High Concentrations of Secondary Organic Aerosols in Northern China during the COVID-19 Lockdowns

    No full text
    During the COVID-19 lockdown in early 2020, observations in Beijing indicate that secondary organic aerosol (SOA) concentrations increased despite substantial emission reduction, but the reasons are not fully explained. Here, we integrate the two-dimensional volatility basis set into a state-of-the-art chemical transport model, which unprecedentedly reproduces organic aerosol (OA) components resolved by the positive matrix factorization based on aerosol mass spectrometer observations. The model shows that, for Beijing, the emission reduction during the lockdown lowered primary organic aerosol (POA)/SOA concentrations by 50%/18%, while deteriorated meteorological conditions increased them by 30%/119%, resulting in a net decrease in the POA concentration and a net increase in the SOA concentration. Emission reduction and meteorological changes both led to an increased OH concentration, which accounts for their distinct effects on POA and SOA. SOA from anthropogenic volatile organic compounds and organics with lower volatility contributed 28 and 62%, respectively, to the net SOA increase. Different from Beijing, the SOA concentration decreased in southern Hebei during the lockdown because of more favorable meteorology. Our findings confirm the effectiveness of organic emission reductions and meanwhile reveal the challenge in controlling SOA pollution that calls for large organic precursor emission reductions to rival the adverse impact of OH increase

    Trends of Full-Volatility Organic Emissions in China from 2005 to 2019 and Their Organic Aerosol Formation Potentials

    No full text
    Emissions of organic compounds have strong influences on the environment. Most previous emission inventories only cover the emissions of particulate organic carbon and nonmethane volatile organic compounds (NMVOC) but neglect the semivolatile and intermediate volatile organic compounds (S/IVOC), which considerably contribute to the organic aerosol (OA) burden. Herein, we developed a full-volatility emission inventory of organic compounds in China from 2005 to 2019 and analyzed the OA formation potential (OAFP) of each volatility bin and source using a two-dimensional volatility basis set (2D-VBS) box model. The emissions of low/extremely low/ultralow VOC (xLVOC) decreased substantially during 2005–2019, while the emissions of SVOC showed significant decline after 2014, mainly because of reduced residential biomass consumption. IVOC and VOC emission amounts in 2019 were similar to those in 2005; however, the major sources of emissions changed substantially. Emissions from volatile chemical products (VCP) increased significantly and became the dominant source of IVOC and VOC emissions. The S/IVOC from VCP contributed 1322 kt of OAFP in 2019, higher than the total anthropogenic xLVOC emissions. Considering the high of S/IVOC, future air pollution control policies should prioritize VCP, residential biomass burning, and diesel vehicles

    Emission trends of air pollutants and CO2 in China from 2005 to 2021

    No full text
    We have compiled a coupled emission dataset of air pollutants and CO2 in mainland China from 2005 to 2021, that is, ABaCAS-EI v2.0 (Air Benefit and Cost and Attainment Assessment System-Emission Inventory version 2.0), which is an updated version of ABaCAS-EI. The dataset covers CO2 and 9 types of air pollutants and includes 11 major source categories and more than 280 subsectors. This dataset introduces emissions by species, sector, year, and province. 1) The species include CO2, SO2, NOx, PM10, PM2.5, BC, OC, VOCs, NH3, and CO. 2) Fifteen emission sectors are reported: agricultural nitrogen fertilizer application, agricultural livestock, residential biofuel combustion, residential fossil fuel combustion, residential solvent usage, other residential sources, industrial boiler, biomass open burning, power plant, cement industry, iron and steel industry, other industrial processes, industrial solvent usage, off-road machine, and on-road vehicle. 3) 2005 to 2021 4) All of the 31 provinces in mainland China.</p

    Modeling the Formation of Organic Compounds across Full Volatility Ranges and Their Contribution to Nanoparticle Growth in a Polluted Atmosphere

    No full text
    Nanoparticle growth influences atmospheric particles’ climatic effects, and it is largely driven by low-volatility organic vapors. However, the magnitude and mechanism of organics’ contribution to nanoparticle growth in polluted environments remain unclear because current observations and models cannot capture organics across full volatility ranges or track their formation chemistry. Here, we develop a mechanistic model that characterizes the full volatility spectrum of organic vapors and their contributions to nanoparticle growth by coupling advanced organic oxidation modeling and kinetic gas-particle partitioning. The model is applied to Nanjing, a typical polluted city, and it effectively captures the volatility distribution of low-volatility organics (with saturation vapor concentrations 3), thus accurately reproducing growth rates (GRs), with a 4.91% normalized mean bias. Simulations indicate that as particles grow from 4 to 40 nm, the relative fractions of GRs attributable to organics increase from 59 to 86%, with the remaining contribution from H2SO4 and its clusters. Aromatics contribute much to condensable organic vapors (∼37%), especially low-volatility vapors (∼61%), thus contributing the most to GRs (32–46%) as 4–40 nm particles grow. Alkanes also contribute 19–35% of GRs, while biogenic volatile organic compounds contribute minimally (<13%). Our model helps assess the climatic impacts of particles and predict future changes
    corecore