6 research outputs found

    Electric Field Control of Molecular Charge State in a Single-Component 2D Organic Nanoarray

    No full text
    Quantum dots (QD) with electric-field-controlled charge state are promising for electronics applications, e.g., digital information storage, single-electron transistors, and quantum computing. Inorganic QDs consisting of semiconductor nanostructures or heterostructures often offer limited control on size and composition distribution as well as low potential for scalability and/or nanoscale miniaturization. Owing to their tunability and self-assembly capability, using organic molecules as building nanounits can allow for bottom-up synthesis of two-dimensional (2D) nanoarrays of QDs. However, 2D molecular self-assembly protocols are often applicable on metals surfaces, where electronic hybridization and Fermi level pinning can hinder electric-field control of the QD charge state. Here, we demonstrate the synthesis of a single-component self-assembled 2D array of molecules [9,10-dicyanoanthracene (DCA)] that exhibit electric-field-controlled spatially periodic charging on a noble metal surface, Ag(111). The charge state of DCA can be altered (between neutral and negative), depending on its adsorption site, by the local electric field induced by a scanning tunneling microscope tip. Limited metal–molecule interactions result in an effective tunneling barrier between DCA and Ag(111) that enables electric-field-induced electron population of the lowest unoccupied molecular orbital (LUMO) and, hence, charging of the molecule. Subtle site-dependent variation of the molecular adsorption height translates into a significant spatial modulation of the molecular polarizability, dielectric constant, and LUMO energy level alignment, giving rise to a spatially dependent effective molecule–surface tunneling barrier and likelihood of charging. This work offers potential for high-density 2D self-assembled nanoarrays of identical QDs whose charge states can be addressed individually with an electric field

    Polarity-Tunable Photocurrent through Band Alignment Engineering in a High-Speed WSe<sub>2</sub>/SnSe<sub>2</sub> Diode with Large Negative Responsivity

    No full text
    Excellent light–matter interaction and a wide range of thickness-tunable bandgaps in layered vdW materials coupled by the facile fabrication of heterostructures have enabled several avenues for optoelectronic applications. Realization of high photoresponsivity at fast switching speeds is a critical challenge for 2D optoelectronics to enable high-performance photodetection for optical communication. Moving away from conventional type-II heterostructure pn junctions towards a WSe2/SnSe2 type-III configuration, we leverage the steep change in tunneling current along with a light-induced heterointerface band shift to achieve high negative photoresponsivity, while the fast carrier transport under tunneling results in high speed. In addition, the photocurrent can be controllably switched from positive to negative values, with ∼104× enhancement in responsivity, by engineering the band alignment from type-II to type-III using either the drain or the gate bias. This is further reinforced by electric-field dependent interlayer band structure calculations using density functional theory. The high negative responsivity of 2 × 104 A/W and fast response time of ∼1 μs coupled with a polarity-tunable photocurrent can lead to the development of next-generation multifunctional optoelectronic devices

    Gigantic Anisotropy of Self-Induced Spin-Orbit Torque in Weyl Ferromagnet Co<sub>2</sub>MnGa

    No full text
    Spin-orbit torque (SOT) is receiving tremendous attention from both fundamental and application-oriented aspects. Co2MnGa, a Weyl ferromagnet that is in a class of topological quantum materials, possesses cubic-based high structural symmetry, the L21 crystal ordering, which should be incapable of hosting anisotropic SOT in conventional understanding. Here we show the discovery of a gigantic anisotropy of self-induced SOT in Co2MnGa. The magnitude of the SOT is comparable to that of heavy metal/ferromagnet bilayer systems, despite the high inversion symmetry of the Co2MnGa structure. More surprisingly, a sign inversion of the self-induced SOT is observed for different crystal axes. This finding stems from the interplay of the topological nature of the electronic states and their strong modulation by external strain. Our research enriches the understanding of the physics of self-induced SOT and demonstrates a versatile method for tuning SOT efficiencies in a wide range of materials for topological and spintronic devices

    Crossover from 2D Ferromagnetic Insulator to Wide Band Gap Quantum Anomalous Hall Insulator in Ultrathin MnBi<sub>2</sub>Te<sub>4</sub>

    No full text
    Intrinsic magnetic topological insulators offer low disorder and large magnetic band gaps for robust magnetic topological phases operating at higher temperatures. By controlling the layer thickness, emergent phenomena such as the quantum anomalous Hall (QAH) effect and axion insulator phases have been realized. These observations occur at temperatures significantly lower than the Néel temperature of bulk MnBi2Te4, and measurement of the magnetic energy gap at the Dirac point in ultrathin MnBi2Te4 has yet to be achieved. Critical to achieving the promise of this system is a direct measurement of the layer-dependent energy gap and verification of a temperature-dependent topological phase transition from a large band gap QAH insulator to a gapless TI paramagnetic phase. Here we utilize temperature-dependent angle-resolved photoemission spectroscopy to study epitaxial ultrathin MnBi2Te4. We directly observe a layer-dependent crossover from a 2D ferromagnetic insulator with a band gap greater than 780 meV in one septuple layer (1 SL) to a QAH insulator with a large energy gap (>70 meV) at 8 K in 3 and 5 SL MnBi2Te4. The QAH gap is confirmed to be magnetic in origin, as it becomes gapless with increasing temperature above 8 K

    Designing Optoelectronic Properties by On-Surface Synthesis: Formation and Electronic Structure of an Iron–Terpyridine Macromolecular Complex

    No full text
    Supramolecular chemistry protocols applied on surfaces offer compelling avenues for atomic-scale control over organic–inorganic interface structures. In this approach, adsorbate–surface interactions and two-dimensional confinement can lead to morphologies and properties that differ dramatically from those achieved via conventional synthetic approaches. Here, we describe the bottom-up, on-surface synthesis of one-dimensional coordination nanostructures based on an iron (Fe)-terpyridine (tpy) interaction borrowed from functional metal–organic complexes used in photovoltaic and catalytic applications. Thermally activated diffusion of sequentially deposited ligands and metal atoms and intraligand conformational changes lead to Fe–tpy coordination and formation of these nanochains. We used low-temperature scanning tunneling microscopy and density functional theory to elucidate the atomic-scale morphology of the system, suggesting a linear tri-Fe linkage between facing, coplanar tpy groups. Scanning tunneling spectroscopy reveals the highest occupied orbitals, with dominant contributions from states located at the Fe node, and ligand states that mostly contribute to the lowest unoccupied orbitals. This electronic structure yields potential for hosting photoinduced metal-to-ligand charge transfer in the visible/near-infrared. The formation of this unusual tpy/tri-Fe/tpy coordination motif has not been observed for wet chemistry synthetic methods and is mediated by the bottom-up on-surface approach used here, offering pathways to engineer the optoelectronic properties and reactivity of metal–organic nanostructures

    DataSheet1_Quasi-freestanding AA-stacked bilayer graphene induced by calcium intercalation of the graphene-silicon carbide interface.pdf

    No full text
    We study quasi-freestanding bilayer graphene on silicon carbide intercalated by calcium. The intercalation, and subsequent changes to the system, were investigated by low-energy electron diffraction, angle-resolved photoemission spectroscopy (ARPES) and density-functional theory (DFT). Calcium is found to intercalate only at the graphene-SiC interface, completely displacing the hydrogen terminating SiC. As a consequence, the system becomes highly n-doped. Comparison to DFT calculations shows that the band dispersion, as determined by ARPES, deviates from the band structure expected for Bernal-stacked bilayer graphene. Instead, the electronic structure closely matches AA-stacked bilayer graphene on calcium-terminated SiC, indicating a spontaneous transition from AB- to AA-stacked bilayer graphene following calcium intercalation of the underlying graphene-SiC interface.</p
    corecore