204 research outputs found

    Pathwise anticipating random periodic solutions of SDEs and SPDEs with linear multiplicative noise

    Get PDF
    Pathwise anticipating random periodic solutions of SDEs and SPDEs with linear multiplicative nois

    Effects of surface-functionalized aluminum nitride on thermal, electrical, and mechanical behaviors of polyarylene ether nitrile-based composites

    Get PDF
    Aluminum nitride (AlN) with high thermal conductivity was blended in polyarylene ether nitrile (PEN) to obtain a composite system. A ball milling process could provide AlN particles of smaller size with higher surface silylation for homogeneous particle distribution in polymeric matrix. Thermal, electrical, and mechanical behaviors of the produced composites were characterized to investigate the effects of particles on the performance of PEN-based composites with functionalized AlN. The composite exhibited thermal conductivity of 0.779 W m−1 K−1, a dielectric constant of 7.7, dielectric loss of 0.032, electrical resistivity of 1.39 GΩ.cm, and break strength of 36 N when the fraction of functionalized AlN increased to 42.3 vol%. A fitted equation based on the improved Russell's model could effectively predict a trend for thermal conductivity of the composite systems with consideration of interfacial resistance between AlN and surrounding PEN

    Test of Perfomance ERK Hybrid Dryer with Biomass Furnace as Additional Heating System for Nutmeg Seed (Myristica SP.) Drying

    Full text link
    Conventional drying depend on the weather. It was caused agricultural product damaged, and moldy attack. So we need hybrid dryer with a source of radiation and solar biomass to continuous drying and can be controlled.The aims of this research is test performance of ERK hybrid dryer to drying the nutmeg seed during the drying process. Experiments were conducted to determine the distribution of temperature in the dryer in condition with no material and material conditions. Input of energy derived from biomass combustion in the furnace (evening) and combination of biomass and radiation (during the day). Measurements of temperature and RH using a thermocouple CC and alcohol thermometer. Temperature and RH to be measured include temperature and RH in dryer with several measurement points representing the up, middle , bottom and inlet temperature, outlet temperature and ambient temperature measurements at intervals of 30 minutes. The results showed average temperature ranges between 42 ° C - 51 ° C and RH ranged between 50.96 % -55.65 % . Time of drying is used to dry nutmeg from the initial moisture content from 80.72 % wb to 9.67 % wb is 52 hours with an average drying rate is 7.8 % db / hour . The total energy used to heat and vaporize materials,water that is 290 499.9 kJ. Efficiency of drying system 8.63% and energy of drying required to water evaporated is 28520.62 kJ / kg. The result quality of product obtained color of nutmeg generally more uniform

    Table1_Lithospheric deformation revealed by teleseismic phases SKS PKS and SKKS splitting in the NE margin of the Tibetan plateau.DOCX

    No full text
    The NE margin of the Tibetan plateau influenced by multiple blocks, the regional dynamic model and lithospheric deformation characteristics are still controversial. In this study, 15 years data from permanent broadband seismic stations of the seismic network in the study area were adopted for splitting analyses of teleseismic phases XKS (SKS PKS and SKKS, shortly named XKS) using a grid search method, longer observations provided each station with a large number of clear seismic phases. The results show that the fast wave directions of XKS splitting are oriented toward WNW or NW, with reference to the direction of absolute plate motion, the lithospheric deformation is dominantly driven by the asthenosphere, although there are local variations. On both sides of the Haiyuan fault zone, there is a noticeable variation in lithospheric azimuthal anisotropy, further enhances the possibility that it is an extended boundary of the Tibetan plateau. Rheological anisotropic features on the western side of the Ordos block emphasize the obstruction of the rigid Ordos lithosphere. The crust and mantle seem to be coupled below the Qinling orogen, possibly related to the lateral movement of lithospheric material. However, in the Hexi corridor, there may be layered anisotropy within the lithosphere, which is inferred to relate to the subductions of the Alxa block and the Qilian orogen. The thicker lithosphere on the southern margin of the Alxa block may influence the asthenospheric flow. In addition, anisotropy results at the southeastern edge of the Alxa block and the Yinchuan graben reflect the possibility that the lithosphere may be characterized by a combination of horizontal and vertical movements. These results have greatly improved our understanding of the dynamic models and lithospheric deformation characteristics of the northeastern margin of the Tibetan plateau and adjacent areas.</p

    Additional file 1 of Dynamics of bacterial insertion sequences: can transposition bursts help the elements persist?

    No full text
    The additional file contains the following sections. Section 1 describes the impact of mutational reversibility on the persistence of IS elements. Section 2 compares alternative scenarios for transposition burst and mutation mechanisms. There we provide simulation results showing the persistence of ISs under different conditions. (PDF 344 Kb

    Legislative Documents

    No full text
    Also, variously referred to as: House bills; House documents; House legislative documents; legislative documents; General Court documents

    Image_3_Genome-Wide Analysis Reveals Ancestral Lack of Seventeen Different tRNAs and Clade-Specific Loss of tRNA-CNNs in Archaea.PDF

    No full text
    <p>Transfer RNA (tRNA) is a category of RNAs that specifically decode messenger RNAs (mRNAs) into proteins by recognizing a set of 61 codons commonly adopted by different life domains. The composition and abundance of tRNAs play critical roles in shaping codon usage and pairing bias, which subsequently modulate mRNA translation efficiency and accuracy. Over the past few decades, effort has been concentrated on evaluating the specificity and redundancy of different tRNA families. However, the mechanism and processes underlying tRNA evolution have only rarely been investigated. In this study, by surveying tRNA genes in 167 completely sequenced genomes, we systematically investigated the composition and evolution of tRNAs in Archaea from a phylogenetic perspective. Our data revealed that archaeal genomes are compact in both tRNA types and copy number. Generally, no more than 44 different types of tRNA are present in archaeal genomes to decode the 61 canonical codons, and most of them have only one gene copy per genome. Among them, tRNA-Met was significantly overrepresented, with an average of three copies per genome. In contrast, the tRNA-UAU and 16 tRNAs with A-starting anticodons (tRNA-ANNs) were rarely detected in all archaeal genomes. The conspicuous absence of these tRNAs across the archaeal phylogeny suggests they might have not been evolved in the common ancestor of Archaea, rather than have lost independently from different clades. Furthermore, widespread absence of tRNA-CNNs in the Methanococcales and Methanobacteriales genomes indicates convergent loss of these tRNAs in the two clades. This clade-specific tRNA loss may be attributing to the reductive evolution of their genomes. Our data suggest that the current tRNA profiles in Archaea are contributed not only by the ancestral tRNA composition, but also by differential maintenance and loss of redundant tRNAs.</p

    Image_2_Genome-Wide Analysis Reveals Ancestral Lack of Seventeen Different tRNAs and Clade-Specific Loss of tRNA-CNNs in Archaea.PDF

    No full text
    <p>Transfer RNA (tRNA) is a category of RNAs that specifically decode messenger RNAs (mRNAs) into proteins by recognizing a set of 61 codons commonly adopted by different life domains. The composition and abundance of tRNAs play critical roles in shaping codon usage and pairing bias, which subsequently modulate mRNA translation efficiency and accuracy. Over the past few decades, effort has been concentrated on evaluating the specificity and redundancy of different tRNA families. However, the mechanism and processes underlying tRNA evolution have only rarely been investigated. In this study, by surveying tRNA genes in 167 completely sequenced genomes, we systematically investigated the composition and evolution of tRNAs in Archaea from a phylogenetic perspective. Our data revealed that archaeal genomes are compact in both tRNA types and copy number. Generally, no more than 44 different types of tRNA are present in archaeal genomes to decode the 61 canonical codons, and most of them have only one gene copy per genome. Among them, tRNA-Met was significantly overrepresented, with an average of three copies per genome. In contrast, the tRNA-UAU and 16 tRNAs with A-starting anticodons (tRNA-ANNs) were rarely detected in all archaeal genomes. The conspicuous absence of these tRNAs across the archaeal phylogeny suggests they might have not been evolved in the common ancestor of Archaea, rather than have lost independently from different clades. Furthermore, widespread absence of tRNA-CNNs in the Methanococcales and Methanobacteriales genomes indicates convergent loss of these tRNAs in the two clades. This clade-specific tRNA loss may be attributing to the reductive evolution of their genomes. Our data suggest that the current tRNA profiles in Archaea are contributed not only by the ancestral tRNA composition, but also by differential maintenance and loss of redundant tRNAs.</p

    Appendices -Supplemental material for City-wide building height determination using light detection and ranging data

    No full text
    <p>Supplemental material, Appendices for City-wide building height determination using light detection and ranging data by Yue Wu, Luke S Blunden and AbuBakr S Bahaj in Environment and Planning B: Urban Analytics and City Science</p

    Image_1_Genome-Wide Analysis Reveals Ancestral Lack of Seventeen Different tRNAs and Clade-Specific Loss of tRNA-CNNs in Archaea.PDF

    No full text
    <p>Transfer RNA (tRNA) is a category of RNAs that specifically decode messenger RNAs (mRNAs) into proteins by recognizing a set of 61 codons commonly adopted by different life domains. The composition and abundance of tRNAs play critical roles in shaping codon usage and pairing bias, which subsequently modulate mRNA translation efficiency and accuracy. Over the past few decades, effort has been concentrated on evaluating the specificity and redundancy of different tRNA families. However, the mechanism and processes underlying tRNA evolution have only rarely been investigated. In this study, by surveying tRNA genes in 167 completely sequenced genomes, we systematically investigated the composition and evolution of tRNAs in Archaea from a phylogenetic perspective. Our data revealed that archaeal genomes are compact in both tRNA types and copy number. Generally, no more than 44 different types of tRNA are present in archaeal genomes to decode the 61 canonical codons, and most of them have only one gene copy per genome. Among them, tRNA-Met was significantly overrepresented, with an average of three copies per genome. In contrast, the tRNA-UAU and 16 tRNAs with A-starting anticodons (tRNA-ANNs) were rarely detected in all archaeal genomes. The conspicuous absence of these tRNAs across the archaeal phylogeny suggests they might have not been evolved in the common ancestor of Archaea, rather than have lost independently from different clades. Furthermore, widespread absence of tRNA-CNNs in the Methanococcales and Methanobacteriales genomes indicates convergent loss of these tRNAs in the two clades. This clade-specific tRNA loss may be attributing to the reductive evolution of their genomes. Our data suggest that the current tRNA profiles in Archaea are contributed not only by the ancestral tRNA composition, but also by differential maintenance and loss of redundant tRNAs.</p
    • …
    corecore