8 research outputs found

    Facile, One-Pot Synthesis, and Antibacterial Activity of Mesoporous Silica Nanoparticles Decorated with Well-Dispersed Silver Nanoparticles

    No full text
    In this study, we exploit a facile, one-pot method to prepare MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs). Silver nanoparticles with diameter of 2–10 nm are highly dispersed in the framework of mesoporous silica nanoparticles. These Ag-MSNs possess an enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria by preventing the aggregation of silver nanoparticles and continuously releasing silver ions for one month. The cytotoxicity assay indicates that the effective antibacterial concentration of Ag-MSNs shows little effect on human cells. This report describes an efficient and economical route to synthesize mesoporous silica nanoparticles with uniform silver nanoparticles, and these nanoparticles show promising applications as antibiotics

    Data_Sheet_3_Visible gland constantly traces virus-induced gene silencing in cotton.DOCX

    No full text
    A virus-induced gene silencing (VIGS) system was established to induce endogenous target gene silencing by post-transcriptional gene silencing (PTGS), which is a powerful tool for gene function analysis in plants. Compared with stable transgenic plant via Agrobacterium-mediated gene transformation, phenotypes after gene knockdown can be obtained rapidly, effectively, and high-throughput through VIGS system. This approach has been successfully applied to explore unknown gene functions involved in plant growth and development, physiological metabolism, and biotic and abiotic stresses in various plants. In this system, GhCLA1 was used as a general control, however, silencing of this gene leads to leaf albino, wilting, and plant death ultimately. As such, it cannot indicate the efficiency of target gene silencing throughout the whole plant growth period. To address this question, in this study, we developed a novel marker gene, Gossypium PIGMENT GLAND FORMATION GENE (GoPGF), as the control to trace the efficiency of gene silencing in the infected tissues. GoPGF has been proved a key gene in gland forming. Suppression of GoPGF does not affect the normal growth and development of cotton. The number of gland altered related to the expression level of GoPGF gene. So it is a good marker that be used to trace the whole growth stages of plant. Moreover, we further developed a method of friction inoculation to enhance and extend the efficiency of VIGS, which facilitates the analysis of gene function in both the vegetative stage and reproductive stage. This improved VIGS technology will be a powerful tool for the rapid functional identification of unknown genes in genomes.</p

    Characterization and Mechanism of a Novel Rice Protein Peptide (AHVGMSGEEPE) Calcium Chelate in Enhancing Calcium Absorption in Caco-2 Cells

    No full text
    Rice protein peptides (RPP) are a potentially valuable source of high-quality calcium chelating properties. However, there is a lack of information regarding the calcium-absorption-promoting effect of RPP and its underlying mechanism. The present study adopted molecular docking methodologies to analyze the 10 most potent peptide segments from RPP. Results revealed that the peptide AHVGMSGEEPE (AHV) displayed optimal calcium binding properties (calcium-chelating capacity 55.69 ± 0.66 mg/g). Quantum chemistry analysis revealed that the AHV peptide effectively binds and forms stable complexes with calcium via the carbonyl oxygen atoms in valine at position 3 and the carbonyl of the C-terminal carboxyl group of glutamate at position 11. The spectral analysis results indicated that AHV may bind to calcium through carboxyl oxygen atoms, resulting in a transition from a smooth surface block-like structure to a dense granular structure. Furthermore, this study demonstrated that the 4 mmol/L AHV-Ca chelate (61.75 ± 13.23 μg/well) significantly increases calcium absorption compared to 1 mM CaCl2 (28.57 ± 8.59 μg/well) in the Caco-2 cell monolayer. In terms of mechanisms, the novel peptide–calcium chelate AHV-Ca derived from RPP exerts a cell-level effect by upregulating the expression of TRPV6 calcium-ion-channel-related genes and proteins (TRPV6 and Calbindin-D9k). This study provides a theoretical basis for developing functional foods with the AHV peptide as ingredients to improve calcium absorption

    Immunofluorescent staining of tight junction proteins occludin, claudin-5 and ZO-1 in ECV304 and bEnd3 cells.

    No full text
    <p>The immunofluorescence of ZO-1 gave distinct strands on cell membrane while the staining of occludin and claudin-5 were diffused and weak in both cell lines. The confocal images were acquired at 20 × magnification.</p

    R123 uptake in ECV304 and bEnd3 cells in the absence or presence of P-gp inhibitor verapamil.

    No full text
    <p>The P-gp inhibitor verapamil delivered no significant effects on R123 uptake in ECV304 cells but significantly increased R123 uptake in bEnd3 cells in comparison with that in the absence of the inhibitor. Data represent means ± SD (n = 3). ** <i>p</i> < 0.01.</p

    Identification of two immortalized cell lines, ECV304 and bEnd3, for <i>in vitro</i> permeability studies of blood-brain barrier - Fig 1

    No full text
    <p><b>TEER (A) and permeability to Lucifer yellow (B) in ECV304 and bEnd3 monoculture and co-culture models with C6 cells.</b> ECV304 demonstrated higher TEER and lower permeability to Lucifer yellow than bEnd3. However, a co-culture of ECV304 or bEnd3 with C6 cells resulted in the decrease of TEER and increase of permeability to Lucifer yellow. Data represent means ± SD (n = 3). * <i>p</i> < 0.05.</p

    A Peptide-Based Nanofibrous Hydrogel as a Promising DNA Nanovector for Optimizing the Efficacy of HIV Vaccine

    No full text
    This report shows that a nanovector composed of peptide-based nanofibrous hydrogel can condense DNA to result in strong immune responses against HIV. This nanovector can strongly activate both humoral and cellular immune responses to a balanced level rarely reported in previous studies, which is crucial for HIV prevention and therapy. In addition, this nanovector shows good biosafety <i>in vitro</i> and <i>in vivo</i>. Detailed characterizations show that the nanofibrous structure of the hydrogel is critical for the dramatically improved immune responses compared to existing materials. This peptide-based nanofibrous hydrogel shows great potential for efficacious HIV DNA vaccines and can be potentially used for delivering other vaccines and drugs
    corecore