2 research outputs found

    Electrostatic Interfacial Cross-Linking and Structurally Oriented Fiber Constructed by Surface-Modified 2D MXene for High-Performance Flexible Pseudocapacitive Storage

    No full text
    Fiber supercapacitors are promising power supplies suitable for wearable electronics, but the internally insufficient cross-linking and random structure of fiber electrodes restrict their performance. This study describes how interfacial cross-linking and oriented structure can fabricate an MXene fiber with high flexibility and electrochemical performance. The continuous and highly oriented macroscopic fibers were constructed by 2D MXene sheets via a liquid-crystalline wet-spinning assembly. The oxyanion-enriched terminations of surface-modified MXene in situ could reinforce the interfacial cross-linking by electrostatic interactions while mediating the sheet-to-sheet lamellar structure within the fiber. The resultant MXene fiber exhibits high electrical conductivity (3545 S cm–1) and mechanical strength (205.5 MPa) and high pseudocapacitance charge storage capability up to 1570.5 F cm–3. Notably, the assembled fiber supercapacitor delivers an energy density of 77.6 mWh cm–3 at 401.9 mW cm–3, exceptional flexibility and stability exhibiting ∼99.5% capacitance retention under mechanical deformation, and can be integrated into commercial textiles to power microelectronic devices. This work provides insight into the fabrication of an advanced MXene fiber and the development of high-performance flexible fiber supercapacitors

    Flexible Lithium-Ion Fiber Battery by the Regular Stacking of Two-Dimensional Titanium Oxide Nanosheets Hybridized with Reduced Graphene Oxide

    No full text
    Increasing interest has recently been devoted to developing small, rapid, and portable electronic devices; thus, it is becoming critically important to provide matching light and flexible energy-storage systems to power them. To this end, compared with the inevitable drawbacks of being bulky, heavy, and rigid for traditional planar sandwiched structures, linear fiber-shaped lithium-ion batteries (LIB) have become increasingly important owing to their combined superiorities of miniaturization, adaptability, and weavability, the progress of which being heavily dependent on the development of new fiber-shaped electrodes. Here, we report a novel fiber battery electrode based on the most widely used LIB material, titanium oxide, which is processed into two-dimensional nanosheets and assembled into a macroscopic fiber by a scalable wet-spinning process. The titania sheets are regularly stacked and conformally hybridized in situ with reduced graphene oxide (rGO), thereby serving as efficient current collectors, which endows the novel fiber electrode with excellent integrated mechanical properties combined with superior battery performances in terms of linear densities, rate capabilities, and cyclic behaviors. The present study clearly demonstrates a new material-design paradigm toward novel fiber electrodes by assembling metal oxide nanosheets into an ordered macroscopic structure, which would represent the most-promising solution to advanced flexible energy-storage systems
    corecore