9 research outputs found
Data_Sheet_1_Case report: Whole-exome sequencing identifies a novel DES mutation (p. E434K) in a Chinese family with cardiomyopathy and sudden cardiac death.xls
BackgroundDesmin is an intermediate filament protein that plays a critical role in the stabilization of the sarcomeres and cell contacts in the cardiac intercalated disk. Mutated DES gene can cause hereditary cardiomyopathy with heterogeneous phenotypes, while the underlying molecular mechanisms requires further investigation.MethodsWe described a Chinese family present with cardiomyopathy and sudden cardiac death (SCD). Whole-exome sequencing (WES) and bioinformatics strategies were employed to explore the genetic entity of this family.ResultsAn unknown heterozygote missense variant (c.1300G > A; p. E434K) of DES gene was identified. The mutation cosegregates in this family. The mutation was predicted as pathogenic and was absent in our 200 healthy controls.ConclusionWe identified a novel DES mutation (p. E434K) in a Chinese family with cardiomyopathy and SCD. Our study not only provided a new case for the study of the relationship between DES mutations and hereditary cardiomyopathy but also broadened the spectrum of DES mutations.</p
Image_1_Case report: Whole-exome sequencing identifies a novel DES mutation (p. E434K) in a Chinese family with cardiomyopathy and sudden cardiac death.PDF
BackgroundDesmin is an intermediate filament protein that plays a critical role in the stabilization of the sarcomeres and cell contacts in the cardiac intercalated disk. Mutated DES gene can cause hereditary cardiomyopathy with heterogeneous phenotypes, while the underlying molecular mechanisms requires further investigation.MethodsWe described a Chinese family present with cardiomyopathy and sudden cardiac death (SCD). Whole-exome sequencing (WES) and bioinformatics strategies were employed to explore the genetic entity of this family.ResultsAn unknown heterozygote missense variant (c.1300G > A; p. E434K) of DES gene was identified. The mutation cosegregates in this family. The mutation was predicted as pathogenic and was absent in our 200 healthy controls.ConclusionWe identified a novel DES mutation (p. E434K) in a Chinese family with cardiomyopathy and SCD. Our study not only provided a new case for the study of the relationship between DES mutations and hereditary cardiomyopathy but also broadened the spectrum of DES mutations.</p
DataSheet1_Case report: A novel WASHC5 variant altering mRNA splicing causes spastic paraplegia in a patient.XLSX
Background: Hereditary spastic paraplegia (HSP) is a progressive upper-motor neurodegenerative disease. Mutations in the WASHC5 gene are associated with autosomal dominant HSP, spastic paraplegia 8 (SPG8). However, due to the small number of reported cases, the exact mechanism remains unclear.Method: We report a Chinese family with HSP. The proband was referred to our hospital due to restless leg syndrome and insomnia. The preliminary clinical diagnosis of the proband was spastic paraplegia. Whole-exome sequencing (WES) and RNA splicing analysis were conducted to evaluate the genetic cause of the disease in this family.Results: A novel splice-altering variant (c.712–2A>G) in the WASHC5 gene was detected and further verified by RNA splicing analysis and Sanger sequencing. Real-time qPCR analysis showed that the expression of genes involved in the Wiskott–Aldrich syndrome protein and SCAR homolog (WASH) complex and endosomal and lysosomal systems was altered due to this variant.Conclusion: A novel heterozygous splice-altering variant (c.712–2A>G) in the WASHC5 gene was detected in a Chinese family with HSP. Our study provided data for genetic counseling to this family and offered evidence that this splicing variant in the WASHC5 gene is significant in causing HSP.</p
Table1_Case report: A novel WASHC5 variant altering mRNA splicing causes spastic paraplegia in a patient.DOCX
Background: Hereditary spastic paraplegia (HSP) is a progressive upper-motor neurodegenerative disease. Mutations in the WASHC5 gene are associated with autosomal dominant HSP, spastic paraplegia 8 (SPG8). However, due to the small number of reported cases, the exact mechanism remains unclear.Method: We report a Chinese family with HSP. The proband was referred to our hospital due to restless leg syndrome and insomnia. The preliminary clinical diagnosis of the proband was spastic paraplegia. Whole-exome sequencing (WES) and RNA splicing analysis were conducted to evaluate the genetic cause of the disease in this family.Results: A novel splice-altering variant (c.712–2A>G) in the WASHC5 gene was detected and further verified by RNA splicing analysis and Sanger sequencing. Real-time qPCR analysis showed that the expression of genes involved in the Wiskott–Aldrich syndrome protein and SCAR homolog (WASH) complex and endosomal and lysosomal systems was altered due to this variant.Conclusion: A novel heterozygous splice-altering variant (c.712–2A>G) in the WASHC5 gene was detected in a Chinese family with HSP. Our study provided data for genetic counseling to this family and offered evidence that this splicing variant in the WASHC5 gene is significant in causing HSP.</p
Table_1_A Novel Homozygous Variant of TMEM231 in a Case With Hypoplasia of the Cerebellar Vermis and Polydactyly.docx
Background: Transmembrane protein 231 (TMEM231) is a component of the B9 complex that participates in the formation of the diffusion barrier between the cilia and plasma membrane. Mutations in TMEM231 gene may contribute to the Joubert syndrome (JBTS) or Meckel–Gruber syndrome (MKS). However, reports on JBTS or MKS caused by TMEM231 mutations are comparatively rare.Method: We describe a Chinese fetus with unexplained hypoplasia of the cerebellar vermis and polydactyly, detected by ultrasound imaging. The fetus was primarily diagnosed with JBTS/MKS. The parents of this fetus were non-consanguineous and healthy. Whole-exome sequencing (WES) and bioinformatics strategies were employed to explore the genetic lesion of this family.Results: An unknown missense variant (c.19C>T;p.R7W) of TMEM231 gene was detected. The variant was predicted as pathogenic and was absent in our 200 healthy controls.Conclusion: WES was employed to explore the genetic lesion of a fetus with unexplained hypoplasia of the cerebellar vermis and polydactyly. A novel variant in TMEM231 gene was identified. Our study not only provided data for genetic counseling and prenatal diagnosis to this family but also broadened the spectrum of TMEM231 mutations.</p
DataSheet4_Case report: A novel mutation of RecQ-like helicase 5 in a Chinese family with early myocardial infarction, coronary artery disease, and stroke hemiplegia.PDF
Background: Myocardial infarction (MI) is a type of severe coronary artery disease (CAD) that can lead to heart failure and sudden cardiac death. The prevalence of heart failure globally is estimated at 1%–2%, of which ∼60% of cases are the consequence of MI as the primary cause. At present, several disease-causing genes have been identified that may be responsible for MI, such as autophagy-related 16-like 1 (ATG16L1) and RecQ-like helicase 5 (RECQL5).Methods: In this study, we enrolled a Chinese family with MI, CAD, and stroke hemiplegia. Whole-exome sequencing was applied to analyze the genetic lesion of the proband. Sanger sequencing was used to validate the candidate mutation in five family members and 200 local control cohorts.Results: After data filtering, we detected a novel mutation (NM_004259: c.1247T>C/p.I416T) of RECQL5 in the proband. Sanger sequencing further validated that the novel mutation was existent in the affected individuals, including the proband’s younger sister and her mother, and absent in the other healthy family members and 200 local control cohorts. Furthermore, bioinformatics analysis confirmed that the novel mutation, located in a highly evolutionarily conserved site, was predicted to be deleterious and may change the hydrophobic surface area and aliphatic index of RECQL5.Conclusion: Here, we report the second mutation (NM_004259: c.1247T>C/p.I416T) of RECQL5 underlying MI and CAD by whole-exome sequencing. Our study expanded the spectrum of RECQL5 mutations and contributed to genetic diagnosis and counseling of MI and CAD.</p
DataSheet3_Case report: A novel mutation of RecQ-like helicase 5 in a Chinese family with early myocardial infarction, coronary artery disease, and stroke hemiplegia.PDF
Background: Myocardial infarction (MI) is a type of severe coronary artery disease (CAD) that can lead to heart failure and sudden cardiac death. The prevalence of heart failure globally is estimated at 1%–2%, of which ∼60% of cases are the consequence of MI as the primary cause. At present, several disease-causing genes have been identified that may be responsible for MI, such as autophagy-related 16-like 1 (ATG16L1) and RecQ-like helicase 5 (RECQL5).Methods: In this study, we enrolled a Chinese family with MI, CAD, and stroke hemiplegia. Whole-exome sequencing was applied to analyze the genetic lesion of the proband. Sanger sequencing was used to validate the candidate mutation in five family members and 200 local control cohorts.Results: After data filtering, we detected a novel mutation (NM_004259: c.1247T>C/p.I416T) of RECQL5 in the proband. Sanger sequencing further validated that the novel mutation was existent in the affected individuals, including the proband’s younger sister and her mother, and absent in the other healthy family members and 200 local control cohorts. Furthermore, bioinformatics analysis confirmed that the novel mutation, located in a highly evolutionarily conserved site, was predicted to be deleterious and may change the hydrophobic surface area and aliphatic index of RECQL5.Conclusion: Here, we report the second mutation (NM_004259: c.1247T>C/p.I416T) of RECQL5 underlying MI and CAD by whole-exome sequencing. Our study expanded the spectrum of RECQL5 mutations and contributed to genetic diagnosis and counseling of MI and CAD.</p
DataSheet2_Case report: A novel mutation of RecQ-like helicase 5 in a Chinese family with early myocardial infarction, coronary artery disease, and stroke hemiplegia.PDF
Background: Myocardial infarction (MI) is a type of severe coronary artery disease (CAD) that can lead to heart failure and sudden cardiac death. The prevalence of heart failure globally is estimated at 1%–2%, of which ∼60% of cases are the consequence of MI as the primary cause. At present, several disease-causing genes have been identified that may be responsible for MI, such as autophagy-related 16-like 1 (ATG16L1) and RecQ-like helicase 5 (RECQL5).Methods: In this study, we enrolled a Chinese family with MI, CAD, and stroke hemiplegia. Whole-exome sequencing was applied to analyze the genetic lesion of the proband. Sanger sequencing was used to validate the candidate mutation in five family members and 200 local control cohorts.Results: After data filtering, we detected a novel mutation (NM_004259: c.1247T>C/p.I416T) of RECQL5 in the proband. Sanger sequencing further validated that the novel mutation was existent in the affected individuals, including the proband’s younger sister and her mother, and absent in the other healthy family members and 200 local control cohorts. Furthermore, bioinformatics analysis confirmed that the novel mutation, located in a highly evolutionarily conserved site, was predicted to be deleterious and may change the hydrophobic surface area and aliphatic index of RECQL5.Conclusion: Here, we report the second mutation (NM_004259: c.1247T>C/p.I416T) of RECQL5 underlying MI and CAD by whole-exome sequencing. Our study expanded the spectrum of RECQL5 mutations and contributed to genetic diagnosis and counseling of MI and CAD.</p
DataSheet1_Case report: A novel mutation of RecQ-like helicase 5 in a Chinese family with early myocardial infarction, coronary artery disease, and stroke hemiplegia.PDF
Background: Myocardial infarction (MI) is a type of severe coronary artery disease (CAD) that can lead to heart failure and sudden cardiac death. The prevalence of heart failure globally is estimated at 1%–2%, of which ∼60% of cases are the consequence of MI as the primary cause. At present, several disease-causing genes have been identified that may be responsible for MI, such as autophagy-related 16-like 1 (ATG16L1) and RecQ-like helicase 5 (RECQL5).Methods: In this study, we enrolled a Chinese family with MI, CAD, and stroke hemiplegia. Whole-exome sequencing was applied to analyze the genetic lesion of the proband. Sanger sequencing was used to validate the candidate mutation in five family members and 200 local control cohorts.Results: After data filtering, we detected a novel mutation (NM_004259: c.1247T>C/p.I416T) of RECQL5 in the proband. Sanger sequencing further validated that the novel mutation was existent in the affected individuals, including the proband’s younger sister and her mother, and absent in the other healthy family members and 200 local control cohorts. Furthermore, bioinformatics analysis confirmed that the novel mutation, located in a highly evolutionarily conserved site, was predicted to be deleterious and may change the hydrophobic surface area and aliphatic index of RECQL5.Conclusion: Here, we report the second mutation (NM_004259: c.1247T>C/p.I416T) of RECQL5 underlying MI and CAD by whole-exome sequencing. Our study expanded the spectrum of RECQL5 mutations and contributed to genetic diagnosis and counseling of MI and CAD.</p