3 research outputs found

    Properties and Atmospheric Implication of Methylamine–Sulfuric Acid–Water Clusters

    No full text
    The presence of amines can increase aerosol formation rates. Most studies have been devoted to dimethylamine as the representative of amine; however, there have been a few works devoted to methylamine. In this study, theoretical calculations are performed on CH<sub>3</sub>NH<sub>2</sub>(H<sub>2</sub>SO<sub>4</sub>)<sub><i>m</i></sub>(H<sub>2</sub>O)<sub><i>n</i></sub> (<i>m</i> = 0–3, <i>n</i> = 0–3) clusters. In addition to the structures and energetics, we focused on determining the following characteristics: (1) the growth mechanism, (2) the hydrate distributions and the influences of humidity and temperature, (3) Rayleigh scattering properties. We explored the cluster growth mechanism from a thermodynamics aspect by calculating the Gibbs free energy of adding a water or sulfuric acid molecule step by step at three atmospherically relevant temperatures. The relative ease of the reaction at each step is discussed. From the analysis of hydrate distributions, we find that CH<sub>3</sub>NH<sub>2</sub>(H<sub>2</sub>SO<sub>4</sub>)­(H<sub>2</sub>O)<sub>2</sub>, CH<sub>3</sub>NH<sub>2</sub>(H<sub>2</sub>SO<sub>4</sub>)<sub>2</sub>, and CH<sub>3</sub>NH<sub>2</sub>(H<sub>2</sub>SO<sub>4</sub>)<sub>3</sub> are most likely to exist in the atmosphere. The general trend of hydration in all cases is more extensive with the growing relative humidity (RH), whereas the distributions do not significantly change with the temperature. Analysis of the Rayleigh scattering properties showed that both H<sub>2</sub>SO<sub>4</sub> and H<sub>2</sub>O molecules could increase the Rayleigh scattering intensities and isotropic mean polarizabilities, with greater influence by the sulfuric acid molecules. This work sheds light on the mechanism for further research on new particle formation (NPF) containing methylamine in the atmosphere

    Theoretical Study of the Hydration of Atmospheric Nucleation Precursors with Acetic Acid

    No full text
    While atmosphere is known to contain a significant fraction of organic substance and the effect of acetic acid to stabilize hydrated sulfuric acids is found to be close that of ammonia, the details about the hydration of (CH3COOH)­(H2SO4)2 are poorly understood, especially for the larger clusters with more water molecules. We have investigated structural characteristics and thermodynamics of the hydrates using density functional theory (DFT) at PW91PW91/6-311++G­(3df,3pd) level. The phenomena of the structural evolution may exist during the early stage of the clusters formation, and we tentatively proposed a calculation path for the Gibbs free energies of the clusters formation via the structural evolution. The results in this study supply a picture of the first deprotonation of sulfuric acids for a system consisting of two sulfuric acid molecules, an acetic acid molecule, and up to three waters at 0 and 298.15 K, respectively. We also replace one of the sulfuric acids with a bisulfate anion in (CH3COOH)­(H2SO4)2 to explore the difference of acid dissociation between two series of clusters and interaction of performance in clusters growth between ion-mediated nucleation and organics-enhanced nucleation

    Properties of Ammonium Ion–Water Clusters: Analyses of Structure Evolution, Noncovalent Interactions, and Temperature and Humidity Effects

    No full text
    Although ammonium ion–water clusters are abundant in the biosphere, some information regarding these clusters, such as their growth route, the influence of temperature and humidity, and the concentrations of various hydrated clusters, is lacking. In this study, theoretical calculations are performed on ammonium ion–water clusters. These theoretical calculations are focused on determining the following characteristics: (1) the pattern of cluster growth; (2) the percentages of clusters of the same size at different temperatures and humidities; (3) the distributions of different isomers for the same size clusters at different temperatures; (4) the relative strengths of the noncovalent interactions for clusters of different sizes. The results suggest that the dipole moment may be very significant for the ammonium ion–water system, and some new stable isomers were found. The nucleation of ammonium ions and water molecules is favorable at low temperatures; thus, the clusters observed at high altitudes might not be present at low altitudes. High humidity can contribute to the formation of large ammonium ion–water clusters, whereas the formation of small clusters may be favorable under low-humidity conditions. The potential energy surfaces (PES) of these different sized clusters are complicated and differ according to the distribution of isomers at different temperatures. Some similar structures are observed between NH<sub>4</sub><sup>+</sup>(H<sub>2</sub>O)<sub><i>n</i></sub> and M­(H<sub>2</sub>O)<sub><i>n</i></sub> (where M represents an alkali metal ion or water molecule); when <i>n</i> = 8, the clusters begin to form the closed-cage geometry. As the cluster size increases, these interactions become progressively weaker. The successive binding energy at the DF-MP2-F12/VDZ-F12 level is better than that at the PW91PW91/6-311++G­(3df, 3pd) level and is consistent with the experimentally determined values
    corecore