7 research outputs found

    Polyelectrolyte/Nanosilicate Thin-Film Assemblies: Influence of pH on Growth, Mechanical Behavior, and Flammability

    No full text
    Thin composite films of branched polyethylenimine (BPEI) and Laponite clay platelets were prepared using layer-by-layer assembly. The film thickness was tailored by altering the pH of the aqueous mixtures used to deposit these films, resulting in growth that ranged from 0.5 to 5 nm/bilayer (BL). High-pH BPEI and low-pH clay produced the thickest films. The microstructure of tilted Laponite clay platelet stacks is observed with transmission electron microscopy when using unadjusted BPEI (pH 10.3) and pH 6 Laponite. This recipe resulted in a film with 83 wt % clay and a hardness of 0.5 GPa. In all films, the clay platelets are uniformly deposited and look analogous to a cobblestone path in atomic force microscopy surface images. Several 40-BL films, with thicknesses of 100 nm or more, exhibit reduced moduli ranging from 7 to 10 GPa and hardness of around 0.5 GPa, suggesting that these transparent films could be useful as hard coatings for plastic films. These thin coatings were also deposited onto cotton fabric. Each individual cotton fiber was uniformly coated, and the fabric has significantly more char left after burning than the uncoated fabric. Thermogravimetric analysis results reveal that fabric coated with 10 BLs of BPEI/Laponite produces up to 6 wt % char at 500 °C, which is almost 1 order of magnitude greater than that of untreated fabric. This initial study demonstrates that polymer/clay assemblies could improve the thermal stability of cotton and may be useful for fire safety applications

    Solution Structure of the Catalytic Domain of Human Stromelysin-1 Complexed to a Potent, Nonpeptidic Inhibitor

    No full text
    The full three-dimensional structure of the catalytic domain of human stromelysin-1 (SCD) complexed to a novel and potent, nonpeptidic inhibitor has been determined by nuclear magnetic resonance spectroscopy (NMR). To accurately mimic assay conditions, the structure was obtained in Tris buffer at pH 6.8 and without the presence of organic solvent. The results showed that the major site of enzyme−inhibitor interaction occurs in the S1‘ pocket whereas portions of the inhibitor that occupy the shallow S2‘ and S1 pockets remained primarily solvent exposed. Because this relatively small inhibitor could not deeply penetrate stromelysin's long narrow hydrophobic S1‘ pocket, the enzyme was found to adopt a dramatic fold in the loop region spanning residues 221−231, allowing occupation of the solvent-accessible S1‘ channel by the enzyme itself. This remarkable conformational fold at the enzyme binding site resulted in constriction of the S1‘ loop region about the inhibitor. Examination of the tertiary structure of the stromelysin−inhibitor complex revealed few hydrogen-bonding or hydrophobic interactions between the inhibitor and enzyme that can contribute to overall binding energy; hence the resultant compact structure may in part account for the relatively high potency exhibited by this inhibitor

    One-Pot, Bioinspired Coatings To Reduce the Flammability of Flexible Polyurethane Foams

    No full text
    In this manuscript, natural materials were combined into a single “pot” to produce flexible, highly fire resistant, and bioinspired coatings on flexible polyurethane foam (PUF). In one step, PUF was coated with a fire protective layer constructed of a polysaccharide binder (starch or agar), a boron fire retardant (boric acid or derivative), and a dirt char former (montmorillonite clay). Nearly all coatings produced a 63% reduction in a critical flammability value, the peak heat release rate (PHRR). One formulation produced a 75% reduction in PHRR. This technology was validated in full-scale furniture fire tests, where a 75% reduction in PHRR was measured. At these PHRR values, this technology could reduce the fire threat of furniture from significant fire damage in and beyond the room of fire origin to being contained to the burning furniture. This flammability reduction was caused by three mechanismsthe gas-phase and condensed-phase processes of the boron fire retardant and the condensed-phase process of the clay. We describe the one-pot coating process and the impact of the coating composition on flammability

    Rapid Growing Clay Coatings to Reduce the Fire Threat of Furniture

    No full text
    Layer-by-layer (LbL) assembly coatings reduce the flammability of textiles and polyurethane foam but require extensive repetitive processing steps to produce the desired coating thickness and nanoparticle fire retardant content that translates into a fire retardant coating. Reported here is a new hybrid bi-layer (BL) approach to fabricate fire retardant coatings on polyurethane foam. Utilizing hydrogen bonding and electrostatic attraction along with the pH adjustment, a fast growing coating with significant fire retardant clay content was achieved. This hybrid BL coating exhibits significant fire performance improvement in both bench scale and real scale tests. Cone calorimetry bench scale tests show a 42% and 71% reduction in peak and average heat release rates, respectively. Real scale furniture mockups constructed using the hybrid LbL coating reduced the peak and average heat release rates by 53% and 63%, respectively. This is the first time that the fire safety in a real scale test has been reported for any LbL technology. This hybrid LbL coating is the fastest approach to develop an effective fire retardant coating for polyurethane foam

    Bivalent Peptidomimetic Ligands of TrkC Are Biased Agonists and Selectively Induce Neuritogenesis or Potentiate Neurotrophin-3 Trophic Signals

    No full text
    This study was initiated to find small molecule ligands that would induce a functional response when docked with neurotrophin Trk receptors. “Minimalist” mimics of β-turns were designed for this purpose. These mimics are (i) rigid, yet easily folded into turn-like conformations, and (ii) readily accessible from amino acids bearing most of the natural side chains. Gram quantities of 16 of these turn mimics were prepared and then assembled into 152 fluorescein-labeled bivalent peptidomimetics via a solution-phase combinatorial method. Fluorescence-based screening of these molecules using cells transfected with the Trk receptors identified 10 potential ligands of TrkC, the receptor for neurotrophin-3. Analogues of these bivalent peptidomimetics with biotin replacing the fluorescein label were then prepared and tested to confirm that binding was not due to the fluorescein. Several assays were conducted to find the mode of action of these biotinylated compounds. Thus, direct binding, survival and neuritogenic, and biochemical signal transduction assays showed 8 of the original 10 hits were agonistic ligands binding to the ectodomain of TrkC. Remarkably, some peptidomimetics afford discrete signals leading to either cell survival or neuritogenic differentiation. The significance of this work is three-fold. First, we succeeded in finding small, selective, proteolytically stable ligands for the TrkC receptor; there are very few of these in the literature. Second, we show that it is possible to activate distinct and biased signaling pathways with ligands binding at the ectodomain of wild-type receptors. Third, the discovery that some peptidomimetics initiate different modes of cell signaling increases their potential as pharmacological probes and therapeutic leads

    Flame Retardant Behavior of Polyelectrolyte−Clay Thin Film Assemblies on Cotton Fabric

    No full text
    Cotton fabric was treated with flame-retardant coatings composed of branched polyethylenimine (BPEI) and sodium montmorillonite (MMT) clay, prepared via layer-by-layer (LbL) assembly. Four coating recipes were created by exposing fabric to aqueous solutions of BPEI (pH 7 or 10) and MMT (0.2 or 1 wt %). BPEI pH 10 produces the thickest films, while 1 wt % MMT gives the highest clay loading. Each coating recipe was evaluated at 5 and 20 bilayers. Thermogravimetric analysis showed that coated fabrics left as much as 13% char after heating to 500 °C, nearly 2 orders of magnitude more than uncoated fabric, with less than 4 wt % coming from the coating itself. These coatings also reduced afterglow time in vertical flame tests. Postburn residues of coated fabrics were examined with SEM and revealed that the weave structure and fiber shape in all coated fabrics were preserved. The BPEI pH 7/1 wt % MMT recipe was most effective. Microcombustion calorimeter testing showed that all coated fabrics reduced the total heat release and heat release capacity of the fabric. Fiber count and strength of uncoated and coated fabric are similar. These results demonstrate that LbL assembly is a relatively simple method for imparting flame-retardant behavior to cotton fabric. This work lays the foundation for using these types of thin film assemblies to make a variety of complex substrates (foam, fabrics, etc.) flame resistant

    Synthesis and Application of A Fluorescent Substrate Analogue to Study Ligand Interactions for Undecaprenyl Pyrophosphate Synthase

    No full text
    Farnesyl pyrophosphate (FPP) serves as a common substrate for many prenyltransferases involved in the biosynthesis of isoprenoid compounds. Undecaprenyl pyrophosphate synthase (UPPs) catalyzes the chain elongation of FPP to C55 undecaprenyl pyrophosphate (UPP) which acts as a lipid carrier in bacterial peptidoglycan synthesis. In this study, 7-(2,6-dimethyl-8-diphospho-2,6-octadienyloxy)-8-methyl-4-trifluoromethyl-chromen-2-one geranyl pyrophosphate, a fluorescent analogue of FPP, was prepared and utilized to study ligand interactions with E. coli UPPs. This compound displays an absorbance maximum at 336 nm and emission maximum at 460 nm without interference from protein autofluorescence. It is a competitive inhibitor with respect to FPP (Ki = 0.57 μM) and also serves as an alternative substrate (Km = 0.69 μM and kcat = 0.02 s-1), but mainly reacts with one isopentenyl pyrophosphate (IPP) probably due to unfavorable product translocation. Fluorescence intensity of this compound is reduced when bound to the enzyme (1:1 stoichiometry), and is recovered by FPP replacement. Using stopped-flow apparatus, the interaction of enzyme with the compound was measured (kon = 55.3 μM-1 s-1 and koff = 31.6 s-1). The product dissociation rate constant (0.5 s-1) determined from the competition experiments is consistent with our previous prediction from kinetic simulation. Unlike several other prenyltransferase reactions in which FPP dissociates slowly, UPPs binds FPP in a rapid equilibrium manner with a fast release rate constant of 30 s-1. The fluorescent analogue of FPP presented here may provide a tool to investigate the ligand interactions for a broad class of FPP-binding proteins
    corecore