64 research outputs found

    Long Story Short: a Summarize-then-Search Method for Long Video Question Answering

    Full text link
    Large language models such as GPT-3 have demonstrated an impressive capability to adapt to new tasks without requiring task-specific training data. This capability has been particularly effective in settings such as narrative question answering, where the diversity of tasks is immense, but the available supervision data is small. In this work, we investigate if such language models can extend their zero-shot reasoning abilities to long multimodal narratives in multimedia content such as drama, movies, and animation, where the story plays an essential role. We propose Long Story Short, a framework for narrative video QA that first summarizes the narrative of the video to a short plot and then searches parts of the video relevant to the question. We also propose to enhance visual matching with CLIPCheck. Our model outperforms state-of-the-art supervised models by a large margin, highlighting the potential of zero-shot QA for long videos.Comment: Published in BMVC 202

    A Deep Ranking Model for Spatio-Temporal Highlight Detection from a 360 Video

    Full text link
    We address the problem of highlight detection from a 360 degree video by summarizing it both spatially and temporally. Given a long 360 degree video, we spatially select pleasantly-looking normal field-of-view (NFOV) segments from unlimited field of views (FOV) of the 360 degree video, and temporally summarize it into a concise and informative highlight as a selected subset of subshots. We propose a novel deep ranking model named as Composition View Score (CVS) model, which produces a spherical score map of composition per video segment, and determines which view is suitable for highlight via a sliding window kernel at inference. To evaluate the proposed framework, we perform experiments on the Pano2Vid benchmark dataset and our newly collected 360 degree video highlight dataset from YouTube and Vimeo. Through evaluation using both quantitative summarization metrics and user studies via Amazon Mechanical Turk, we demonstrate that our approach outperforms several state-of-the-art highlight detection methods. We also show that our model is 16 times faster at inference than AutoCam, which is one of the first summarization algorithms of 360 degree videosComment: In AAAI 2018, 9 page

    CHAMPAGNE: Learning Real-world Conversation from Large-Scale Web Videos

    Full text link
    Visual information is central to conversation: body gestures and physical behaviour, for example, contribute to meaning that transcends words alone. To date, however, most neural conversational models are limited to just text. We introduce CHAMPAGNE, a generative model of conversations that can account for visual contexts. To train CHAMPAGNE, we collect and release YTD-18M, a large-scale corpus of 18M video-based dialogues. YTD-18M is constructed from web videos: crucial to our data collection pipeline is a pretrained language model that converts error-prone automatic transcripts to a cleaner dialogue format while maintaining meaning. Human evaluation reveals that YTD-18M is more sensible and specific than prior resources (MMDialog, 1M dialogues), while maintaining visual-groundedness. Experiments demonstrate that 1) CHAMPAGNE learns to conduct conversation from YTD-18M; and 2) when fine-tuned, it achieves state-of-the-art results on four vision-language tasks focused on real-world conversations. We release data, models, and code.Comment: ICCV 2023, Project page: https://seungjuhan.me/champagn

    Scalp Diagnostic System With Label-Free Segmentation and Training-Free Image Translation

    Full text link
    Scalp diseases and alopecia affect millions of people around the world, underscoring the urgent need for early diagnosis and management of the disease. However, the development of a comprehensive AI-based diagnosis system encompassing these conditions remains an underexplored domain due to the challenges associated with data imbalance and the costly nature of labeling. To address these issues, we propose ScalpVision, an AI-driven system for the holistic diagnosis of scalp diseases and alopecia. In ScalpVision, effective hair segmentation is achieved using pseudo image-label pairs and an innovative prompting method in the absence of traditional hair masking labels. This approach is crucial for extracting key features such as hair thickness and count, which are then used to assess alopecia severity. Additionally, ScalpVision introduces DiffuseIT-M, a generative model adept at dataset augmentation while maintaining hair information, facilitating improved predictions of scalp disease severity. Our experimental results affirm ScalpVision's efficiency in diagnosing a variety of scalp conditions and alopecia, showcasing its potential as a valuable tool in dermatological care.Comment: IEEE Transactions on Medical Imaging (Under Review

    Learning Joint Representation of Human Motion and Language

    Full text link
    In this work, we present MoLang (a Motion-Language connecting model) for learning joint representation of human motion and language, leveraging both unpaired and paired datasets of motion and language modalities. To this end, we propose a motion-language model with contrastive learning, empowering our model to learn better generalizable representations of the human motion domain. Empirical results show that our model learns strong representations of human motion data through navigating language modality. Our proposed method is able to perform both action recognition and motion retrieval tasks with a single model where it outperforms state-of-the-art approaches on a number of action recognition benchmarks

    Tuning Large Multimodal Models for Videos using Reinforcement Learning from AI Feedback

    Full text link
    Recent advancements in large language models have influenced the development of video large multimodal models (VLMMs). The previous approaches for VLMMs involved Supervised Fine-Tuning (SFT) with instruction-tuned datasets, integrating LLM with visual encoders, and adding additional learnable modules. Video and text multimodal alignment remains challenging, primarily due to the deficient volume and quality of multimodal instruction-tune data compared to text-only data. We present a novel alignment strategy that employs multimodal AI system to oversee itself called Reinforcement Learning from AI Feedback (RLAIF), providing self-preference feedback to refine itself and facilitating the alignment of video and text modalities. In specific, we propose context-aware reward modeling by providing detailed video descriptions as context during the generation of preference feedback in order to enrich the understanding of video content. Demonstrating enhanced performance across diverse video benchmarks, our multimodal RLAIF approach, VLM-RLAIF, outperforms existing approaches, including the SFT model. We commit to open-sourcing our code, models, and datasets to foster further research in this area.Comment: ACL 202
    corecore