12 research outputs found
Allometric Scaling of Countries
As huge complex systems consisting of geographic regions, natural resources,
people and economic entities, countries follow the allometric scaling law which
is ubiquitous in ecological, urban systems. We systematically investigated the
allometric scaling relationships between a large number of macroscopic
properties and geographic (area), demographic (population) and economic (GDP,
gross domestic production) sizes of countries respectively. We found that most
of the economic, trade, energy consumption, communication related properties
have significant super-linear (the exponent is larger than 1) or nearly linear
allometric scaling relations with GDP. Meanwhile, the geographic (arable area,
natural resources, etc.), demographic(labor force, military age population,
etc.) and transportation-related properties (road length, airports) have
significant and sub-linear (the exponent is smaller than 1) allometric scaling
relations with area. Several differences of power law relations with respect to
population between countries and cities were pointed out. Firstly, population
increases sub-linearly with area in countries. Secondly, GDP increases linearly
in countries but not super-linearly as in cities. Finally, electricity or oil
consumptions per capita increases with population faster than cities.Comment: 23 pages, 3 figure
Agent-Based Modeling of the Prediction Markets
We propose a simple agent-based model of the political election prediction market which reflects the intrinsic feature of the prediction market as an information aggregation mechanism. Each agent has a vote, and all agents’ votes determine the election result. Some of the agents participate in the prediction market. Agents form their beliefs by observing their neighbors’ voting disposition, and trade with these beliefs by following some forms of the zero-intelligence strategy. In this model, the mean price of the market is used as a forecast of the election result. We study the effect of the radius of agents’ neighborhood and the geographical distribution of information on the prediction accuracy. In addition, we also identify one of the mechanisms which can replicate the favorite-longshot bias, a stylized fact in the prediction market. This model can then provide a framework for further analysis on the prediction market when market participants have more sophisticated trading behavior.Prediction market, Agent-based simulation, Information aggregation mechanism, Prediction accuracy, Zero-intelligence agents, Favorite-longshot bias
Social Norm, Costly Punishment and the Evolution to Cooperation
Both laboratory and field evidence suggest that people tend to voluntarily incur costs to punish non-cooperators. While costly punishment typically reduces the average payoff as well as promotes cooperation. Why does the costly punishment evolve? We study the role of punishment in cooperation promotion within a two-level evolution framework of individual strategies and social norms. In a population with certain social norm, players update their strategies according to the payoff differences among different strategies. In a longer horizon, the evolution of social norm may be driven by the average payoffs of all members of the society. Norms differ in whether they allow or do not allow for the punishment action as part of strategies, and, for the former, they further differ in whether they encourage or do not encourage the punishment action. The strategy dynamics are articulated under different social norms. It is found that costly punishment does contribute to the evolution toward cooperation. Not only does the attraction basin of cooperative evolutionary stable state (CESS) become larger, but also the convergence speed to CESS is faster. These two properties are further enhanced if the punishment action is encouraged by the social norm. This model can be used to explain the widespread existence of costly punishment in human society.social norm; costly punishment; cooperative evolutionary stable state; attraction basin; convergence speed
Dynamic Regimes of a Multi-agent Stock Market Model
This paper presents a stochastic multi-agent model of stock
market. The market dynamics include switches between chartists and fundamentalists and switches in the prevailing opinions (optimistic or pessimistic) among chartists. A nonlinear dynamical system is derived to depict the underlying mechanisms of market evolvement. Under different settings of parameters representing traders' mimetic contagion propensity, price chasing propensity and strategy switching propensity, the system exhibits four kinds of dynamic regimes: fundamental equilibrium, non-fundamental equilibrium, periodicity and chaos
Social Norm, Costly Punishment and the Evolution to Cooperation
Both laboratory and field evidence suggest that people tend to voluntarily incur costs to punish non-cooperators. While costly punishment typically reduces the average payoff as well as promotes cooperation. Why does the costly punishment evolve? We study the role of punishment in cooperation promotion within a two-level evolution framework of individual strategies and social norms. In a population with certain social norm, players update their strategies according to the payoff differences among different strategies. In a longer horizon, the evolution of social norm may be driven by the average payoffs of all members of the society. Norms differ in whether they allow or do not allow for the punishment action as part of strategies, and, for the former, they further differ in whether they encourage or do not encourage the punishment action. The strategy dynamics are articulated under different social norms. It is found that costly punishment does contribute to the evolution toward cooperation. Not only does the attraction basin of cooperative evolutionary stable state (CESS) become larger, but also the convergence speed to CESS is faster. These two properties are further enhanced if the punishment action is encouraged by the social norm. This model can be used to explain the widespread existence of costly punishment in human society
Social Norm, Costly Punishment and the Evolution to Cooperation
Both laboratory and field evidence suggest that people tend to voluntarily incur costs to punish non-cooperators. While costly punishment typically reduces the average payoff as well as promotes cooperation. Why does the costly punishment evolve? We study the role of punishment in cooperation promotion within a two-level evolution framework of individual strategies and social norms. In a population with certain social norm, players update their strategies according to the payoff differences among different strategies. In a longer horizon, the evolution of social norm may be driven by the average payoffs of of all members of the society. Norms differ in whether they allow or do not allow for the punishment action as part of strategies, and, for the former, they further differ in whether they encourage or do not encourage the punishment action. The strategy dynamics are articulated under different social norms. It is found that costly punishment does contribute to the evolution toward cooperation. Not only does the attraction basin of cooperative evolutionary stable state (CESS) become larger, but also the convergence speed to CESS is faster. These two properties are further enhanced if the punishment action is encouraged by the social norm. This model can be used to explain the widespread existence of costly punishment in human society
Social Norm, Costly Punishment and the Evolution to Cooperation
Both laboratory and field evidence suggest that people tend to voluntarily incur costs to punish non-cooperators. While costly punishment typically reduces the average payoff as well as promotes cooperation. Why does the costly punishment evolve? We study the role of punishment in cooperation promotion within a two-level evolution framework of individual strategies and social norms. In a population with certain social norm, players update their strategies according to the payoff differences among different strategies. In a longer horizon, the evolution of social norm may be driven by the average payoffs of all members of the society. Norms differ in whether they allow or do not allow for the punishment action as part of strategies, and, for the former, they further differ in whether they encourage or do not encourage the punishment action. The strategy dynamics are articulated under different social norms. It is found that costly punishment does contribute to the evolution toward cooperation. Not only does the attraction basin of cooperative evolutionary stable state (CESS) become larger, but also the convergence speed to CESS is faster. These two properties are further enhanced if the punishment action is encouraged by the social norm. This model can be used to explain the widespread existence of costly punishment in human society
Dynamic Regimes of a Multi-agent Stock Market Model
This paper presents a stochastic multi-agent model of stock market. The market dynamics include switches between chartists and fundamentalists and switches in the prevailing opinions (optimistic or pessimistic) among chartists. A nonlinear dynamical system is derived to depict the underlying mechanisms of market evolvement. Under different settings of parameters representing traders' mimetic contagion propensity, price chasing propensity and strategy switching propensity, the system exhibits four kinds of dynamic regimes: fundamental equilibrium, non-fundamental equilibrium, periodicity and chaos.multi-agent stock market model, market dynamic regime, bifurcation analysis
Fine-grained wetland classification for national wetland reserves using multi-source remote sensing data and Pixel Information Expert Engine (PIE-Engine)
Timely and accurate wetland information is necessary for wetland resource management. Recent advances in machine learning and remote sensing have facilitated cost-effective monitoring of wetlands. However, reliable methods for fine-grained and rapid wetland mapping are still lacking. To address the issue, a wetland sample set with 20 categories for China was collected based on a sampling strategy that combines automatic sample generation and visual interpretation. Simultaneously, a novel multi-stage method for fine-grained wetland classification was proposed, which integrates pixel-based and object-based strategies using ensemble learning algorithms and multi-source remote sensing data. First, a pixel-based ensemble learning algorithm was implemented to classify five rough wetland categories and six non-wetland categories. Second, an object-based ensemble learning approach was designed to separate the water cover in the pixel-based classification results into eight detailed categories. Third, the merged pixel-based and object-based classification results were refined with knowledge-based post-processing procedures to identify 14 fine-grained wetland categories. Results using the Pixel Information Expert Engine (PIE-Engine) cloud platform proved the effectiveness of the proposed wetland classification method. The overall accuracy, kappa, and weighted F1 reached 87.39%, 82.80%, and 86.02%, respectively. The adopted ensemble learning algorithm yielded better performance than classifiers such as CatBoost, random forest, and XGBoost. The incorporation of spectral, texture, shape, topographic, and geographic features from multi-source data contributed to differentiating wetland categories. According to the relative contribution, spectral indexes (NDVI and NDWI), texture features (sum average and contrast), and topographic features (slope and elevation) were identified as important leading predictors for the first-stage pixel-based classification. Shape features (shape index and compactness) and auxiliary features (geographic location) were crucial predictors for the second-stage object-based classification. Compared with other products, our 10-m wetland mapping results for national wetland reserves were rich in detail and fine in categories. Overall, the constructed sample set and developed classification method show promise in laying a foundation for large-scale wetland mapping. The derived wetland maps can provide support for wetland protection and restoration.</p