32,745 research outputs found
State Transitions in Ultracompact Neutron Star LMXBs: towards the Low Luminosity Limit
Luminosity of X-ray spectral state transitions in black hole and neutron star
X-ray binaries can put constraint on the critical mass accretion rate between
accretion regimes. Previous studies indicate that the hard-to-soft spectral
state transitions in some ultracompact neutron star LMXBs have the lowest
luminosity. With X-ray monitoring observations in the past decade, we were able
to identify state transitions towards the lowest luminosity limit in 4U
0614+091, 2S 0918-549 and 4U 1246-588. By analysing corresponding X-ray pointed
observations with the Swift/XRT and the RXTE/PCA, we found no hysteresis of
state transitions in these sources, and determined the critical mass accretion
rate in the range of 0.002 - 0.04 and 0.003 - 0.05
for the hard-to-soft and the soft-to-hard transition,
respectively, by assuming a neutron star mass of 1.4 solar masses. This range
is comparable to the lowest transition luminosity measured in black hole X-ray
binaries, indicating the critical mass accretion rate is not affected by the
nature of the surface of the compact stars. Our result does not support the
Advection-Dominated Accretion Flow (ADAF) model which predicts that the
critical mass accretion rate in neutron star systems is an order of magnitude
lower if same viscosity parameters are taken. The low transition luminosity and
insignificant hysteresis in these ultracompact X-ray binaries provide further
evidence that the transition luminosity is likely related to the mass in the
disc.Comment: 12 pages, 4 figures, to appear in MNRA
Coordinates and Automorphisms of Polynomial and Free Associative Algebras of Rank Three
We study z-automorphisms of the polynomial algebra K[x,y,z] and the free
associative algebra K over a field K, i.e., automorphisms which fix the
variable z. We survey some recent results on such automorphisms and on the
corresponding coordinates. For K we include also results about the
structure of the z-tame automorphisms and algorithms which recognize z-tame
automorphisms and z-tame coordinates
Tame Automorphisms Fixing a Variable of Free Associative Algebras of Rank Three
We study automorphisms of the free associative algebra K over a field
K which fix the variable z. We describe the structure of the group of z-tame
automorphisms and derive algorithms which recognize z-tame automorphisms and
z-tame coordinates
Embeddings of curves in the plane
In this paper, we contribute toward a classification of two-variable
polynomials by classifying (up to an automorphism of ) polynomials whose
Newton polygon is either a triangle or a line segment. Our classification has
several applications to the study of embeddings of algebraic curves in the
plane. In particular, we show that for any , there is an irreducible
curve with one place at infinity, which has at least inequivalent
embeddings in . Also, upon combining our method with a well-known theorem
of Zaidenberg and Lin, we show that one can decide "almost" just by inspection
whether or not a polynomial fiber is an irreducible simply connected curve.Comment: 11 page
The strong Anick conjecture is true
Recently Umirbaev has proved the long-standing Anick conjecture, that is,
there exist wild automorphisms of the free associative algebra K over a
field K of characteristic 0. In particular, the well-known Anick automorphism
is wild. In this article we obtain a stronger result (the Strong Anick
Conjecture that implies the Anick Conjecture). Namely, we prove that there
exist wild coordinates of K. In particular, the two nontrivial
coordinates in the Anick automorphism are both wild. We establish a similar
result for several large classes of automorphisms of K. We also find a
large new class of wild automorphisms of K which is not covered by the
results of Umirbaev. Finally, we study the lifting problem for automorphisms
and coordinates of polynomial algebras, free metabelian algebras and free
associative algebras and obtain some interesting new results.Comment: 25 pages, corrected typos and acknowledgement
Affine varieties with equivalent cylinders
A well-known cancellation problem asks when, for two algebraic varieties
, the isomorphism of the cylinders and implies the isomorphism of and .
In this paper, we address a related problem: when the equivalence (under an
automorphism of ) of two cylinders and implies the equivalence of their bases and under an
automorphism of ? We concentrate here on hypersurfaces and show that
this problem establishes a strong connection between the Cancellation
conjecture of Zariski and the Embedding conjecture of Abhyankar and Sathaye. We
settle the problem for a large class of polynomials. On the other hand, we give
examples of equivalent cylinders with inequivalent bases (those cylinders,
however, are not hypersurfaces).
Another result of interest is that, for an arbitrary field , the
equivalence of two polynomials in variables under an automorphism of
implies their equivalence under a tame automorphism
of .Comment: 12 page
Degree estimate for commutators
Let K be a free associative algebra over a field K of characteristic 0 and
let each of the noncommuting polynomials f,g generate its centralizer in K.
Assume that the leading homogeneous components of f and g are algebraically
dependent with degrees which do not divide each other. We give a counterexample
to the recent conjecture of Jie-Tai Yu that deg([f,g])=deg(fg-gf) >
min{deg(f),deg(g)}. Our example satisfies deg(g)/2 < deg([f,g]) < deg(g) <
deg(f) and deg([f,g]) can be made as close to deg(g)/2 as we want. We obtain
also a counterexample to another related conjecture of Makar-Limanov and
Jie-Tai Yu stated in terms of Malcev - Neumann formal power series. These
counterexamples are found using the description of the free algebra K
considered as a bimodule of K[u] where u is a monomial which is not a power of
another monomial and then solving the equation [u^m,s]=[u^n,r] with unknowns
r,s in K.Comment: 18 page
- β¦