159 research outputs found
Hypoxia-induced overexpression of stanniocalcin-1 is associated with the metastasis of early stage clear cell renal cell carcinoma
Investigating the L-Glu-NMDA receptor-H2S-NMDA receptor pathway that regulates gastric function in rats’ nucleus ambiguus
BackgroundIn previous investigations, we explored the regulation of gastric function by hydrogen sulfide (H2S) and L-glutamate (L-Glu) injections in the nucleus ambiguus (NA). We also determined that both H2S and L-Glu have roles to play in the physiological activities of the body, and that NA is an important nucleus for receiving visceral sensations. The purpose of this study was to explore the potential pathway link between L-Glu and H2S, resulting in the regulation of gastric function.MethodsPhysiological saline (PS), L-glutamate (L-Glu, 2 nmol), NaHS (2 nmol), D-2-amino-5-phopho-novalerate (D-AP5, 2 nmol) + L-Glu (2 nmol), aminooxyacetic acid (AOAA, 2 nmol) + L-Glu (2 nmol), D-AP5 (2 nmol) + NaHS (2 nmol) were injected into the NA. A balloon was inserted into the stomach to observe gastric pressure and for recording the changes of gastric smooth muscle contraction curve. The gastric fluid was collected by esophageal perfusion and for recording the change of gastric pH value.ResultsInjecting L-Glu in NA was found to significantly inhibit gastric motility and promote gastric acid secretion in rats (p < 0.01). On the other hand, injecting the PS, pre-injection N-methyl-D-aspartate (NMDA) receptor blocker D-AP5, cystathionine beta-synthase (CBS) inhibitor AOAA and re-injection L-Glu did not result in significant changes (p > 0.05). The same injection NaHS significantly inhibit gastric motility and promote gastric acid secretion in rats (p < 0.01), but is eliminated by injection D-AP5 (p > 0.05).ConclusionThe results indicate that both exogenous L-Glu and H2S injected in NA regulate gastric motility and gastric acid secretion through NMDA receptors. This suggests that NA has an L-Glu-NMDA receptor-CBS-H2S pathway that regulates gastric function
Synergies and Prospects for Early Resolution of the Neutrino Mass Ordering
The measurement of neutrino Mass Ordering (MO) is a fundamental element for
the understanding of leptonic flavour sector of the Standard Model of Particle
Physics. Its determination relies on the precise measurement of and using either neutrino vacuum oscillations, such
as the ones studied by medium baseline reactor experiments, or matter effect
modified oscillations such as those manifesting in long-baseline neutrino beams
(LBB) or atmospheric neutrino experiments. Despite existing MO indication
today, a fully resolved MO measurement (5) is most likely to
await for the next generation of neutrino experiments: JUNO, whose stand-alone
sensitivity is 3, or LBB experiments (DUNE and
Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected
to provide precious information. In this work, we study the possible context
for the earliest full MO resolution. A firm resolution is possible even before
2028, exploiting mainly vacuum oscillation, upon the combination of JUNO and
the current generation of LBB experiments (NOvA and T2K). This opportunity
is possible thanks to a powerful synergy boosting the overall sensitivity where
the sub-percent precision of by LBB experiments is found
to be the leading order term for the MO earliest discovery. We also found that
the comparison between matter and vacuum driven oscillation results enables
unique discovery potential for physics beyond the Standard Model.Comment: Entitled in arXiv:2008.11280v1 as "Earliest Resolution to the
Neutrino Mass Ordering?
High-Level Expression of Notch1 Increased the Risk of Metastasis in T1 Stage Clear Cell Renal Cell Carcinoma
Background: Although metastasis of clear cell renal cell carcinoma (ccRCC) is basically observed in late stage tumors, T1 stage metastasis of ccRCC can also be found with no definite molecular cause resulting inappropriate selection of surgery method and poor prognosis. Notch signaling is a conserved, widely expressed signal pathway that mediates various cellular processes in normal development and tumorigenesis. This study aims to explore the potential role and mechanism of Notch signaling in the metastasis of T1 stage ccRCC. Methodology/Principal Findings: The expression of Notch1 and Jagged1 were analyzed in tumor tissues and matched normal adjacent tissues obtained from 51 ccRCC patients. Compared to non-tumor tissues, Notch1 and Jagged1 expression was significantly elevated both in mRNA and protein levels in tumors. Tissue samples of localized and metastatic tumors were divided into three groups based on their tumor stages and the relative mRNA expression of Notch1 and Jagged1 were analyzed. Compared to localized tumors, Notch1 expression was significantly elevated in metastatic tumors in T1 stage while Jagged1 expression was not statistically different between localized and metastatic tumors of all stages. The average size of metastatic tumors was significantly larger than localized tumors in T1 stage ccRCC and the elevated expression of Notch1 was significantly positive correlated with the tumor diameter. The functional significance of Notch signaling was studied by transfection of 786-O, Caki-1 and HKC cell lines with full-length expression plasmids of Notch1 and Jagged1
Real-time Monitoring for the Next Core-Collapse Supernova in JUNO
Core-collapse supernova (CCSN) is one of the most energetic astrophysical
events in the Universe. The early and prompt detection of neutrinos before
(pre-SN) and during the SN burst is a unique opportunity to realize the
multi-messenger observation of the CCSN events. In this work, we describe the
monitoring concept and present the sensitivity of the system to the pre-SN and
SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is
a 20 kton liquid scintillator detector under construction in South China. The
real-time monitoring system is designed with both the prompt monitors on the
electronic board and online monitors at the data acquisition stage, in order to
ensure both the alert speed and alert coverage of progenitor stars. By assuming
a false alert rate of 1 per year, this monitoring system can be sensitive to
the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos
up to about 370 (360) kpc for a progenitor mass of 30 for the case
of normal (inverted) mass ordering. The pointing ability of the CCSN is
evaluated by using the accumulated event anisotropy of the inverse beta decay
interactions from pre-SN or SN neutrinos, which, along with the early alert,
can play important roles for the followup multi-messenger observations of the
next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
JUNO Sensitivity to Invisible Decay Modes of Neutrons
We explore the bound neutrons decay into invisible particles (e.g.,
or ) in the JUNO liquid scintillator
detector. The invisible decay includes two decay modes: and . The invisible decays of -shell neutrons in
will leave a highly excited residual nucleus. Subsequently, some
de-excitation modes of the excited residual nuclei can produce a time- and
space-correlated triple coincidence signal in the JUNO detector. Based on a
full Monte Carlo simulation informed with the latest available data, we
estimate all backgrounds, including inverse beta decay events of the reactor
antineutrino , natural radioactivity, cosmogenic isotopes and
neutral current interactions of atmospheric neutrinos. Pulse shape
discrimination and multivariate analysis techniques are employed to further
suppress backgrounds. With two years of exposure, JUNO is expected to give an
order of magnitude improvement compared to the current best limits. After 10
years of data taking, the JUNO expected sensitivities at a 90% confidence level
are and
.Comment: 28 pages, 7 figures, 4 table
Detection of the Diffuse Supernova Neutrino Background with JUNO
As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
Potential of Core-Collapse Supernova Neutrino Detection at JUNO
JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
Effects of Resveratrol on Mouse B16 Melanoma Cell Proliferation through the SHCBP1-ERK1/2 Signaling Pathway
Melanoma originates from the malignant mutational transformation of melanocytes in the basal layer of the epidermal layer of the skin. It can easily spread and metastasize in the early stage, resulting in a poor prognosis. Therefore, it is particularly important to find effective antitumor adjuvant drugs to inhibit the occurrence and development of melanoma. In this study, we found that resveratrol, a polyphenolic compound from grape plants, can significantly inhibit the proliferation, colony formation and migration of mouse melanoma B16 cells. Notably, resveratrol was also found to inhibit the expression of SHCBP1 in B16 cells. Transcriptional analysis and cellular studies showed that SHCBP1 can activate the MAPK/ERK signaling pathway to regulate cyclin expression and promote the G1/S phase transition of the cell cycle by upregulating ERK1/2 phosphorylation levels. Resveratrol further downregulates the phosphorylation level of ERK1/2 by inhibiting SHCBP1 expression, thus inhibiting tumor cell proliferation. In conclusion, resveratrol inhibits the proliferation of B16 cells by regulating the ERK1/2 signaling pathway through SHCBP1. As an upstream protein of the ERK1/2 signaling pathway, SHCBP1 may be involved in the process of resveratrol-mediated inhibition of tumor cell proliferation
- …