927 research outputs found
Generating coherent state of entangled spins
A coherent state of many spins contains quantum entanglement which increases
with a decrease in the collective spin value. We present a scheme to engineer
this class of pure state based on incoherent spin pumping with a few collective
raising/lowering operators. In a pumping scenario aimed for maximum
entanglement, the steady-state of N pumped spin qubits realizes the ideal
resource for the 1 to N/2 quantum telecloning. We show how the scheme can be
implemented in a realistic system of atomic spin qubits in optical lattice.
Error analysis show that high fidelity state engineering is possible for N ~
O(100) spins in the presence of decoherence. The scheme can also prepare a
resource state for the secret sharing protocol and for the construction of
large scale Affleck-Kennedy-Lieb-Tasaki (AKLT) state.Comment: updated version to appear on Phys. Rev.
Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers
We investigate the optical properties of spin-triplet interlayer excitons in
heterobilayer transition metal dichalcogenides in comparison with the
spin-singlet ones. Surprisingly, the optical transition dipole of the
spin-triplet exciton is found to be in the same order of magnitude to that of
the spin-singlet exciton, in sharp contrast to the monolayer excitons where the
spin triplet species is considered as dark compared to the singlet. Unlike the
monolayer excitons whose spin-conserved (spin-flip) transition dipole can only
couple to light of in-plane (out-of-plane) polarization, such restriction is
removed for the interlayer excitons due to the breaking of the out-of-plane
mirror symmetry. We find that as the interlayer atomic registry changes, the
optical transition dipole of interlayer exciton crosses between in-plane ones
of opposite circular polarization and the out-of-plane one for both the
spin-triplet and spin-singlet species. As a result, excitons of both species
have non-negligible coupling into photon modes of both in-plane and
out-of-plane propagations, another sharp difference from the monolayers where
the exciton couples predominantly into the out-of-plane propagation channel. At
given atomic registry, the spin-triplet and spin-singlet excitons have distinct
valley polarization selection rules, allowing the selective optical addressing
of both the valley configuration and the spin singlet/triplet configuration of
interlayer excitons
Valley excitons in two-dimensional semiconductors
Monolayer group-VIB transition metal dichalcogenides have recently emerged as
a new class of semiconductors in the two-dimensional limit. The attractive
properties include: the visible range direct band gap ideal for exploring
optoelectronic applications; the intriguing physics associated with spin and
valley pseudospin of carriers which implies potentials for novel electronics
based on these internal degrees of freedom; the exceptionally strong Coulomb
interaction due to the two-dimensional geometry and the large effective masses.
The physics of excitons, the bound states of electrons and holes, has been one
of the most actively studied topics on these two-dimensional semiconductors,
where the excitons exhibit remarkably new features due to the strong Coulomb
binding, the valley degeneracy of the band edges, and the valley dependent
optical selection rules for interband transitions. Here we give a brief
overview of the experimental and theoretical findings on excitons in
two-dimensional transition metal dichalcogenides, with focus on the novel
properties associated with their valley degrees of freedom.Comment: Topical review, published online on National Science Review in Jan
201
Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers
We show that, because of the inevitable twist and lattice mismatch in
heterobilayers of transition metal dichalcogenides, interlayer excitons have
six-fold degenerate light cones anomalously located at finite velocities on the
parabolic energy dispersion. The photon emissions at each light cone are
elliptically polarized, with major axis locked to the direction of exciton
velocity, and helicity specified by the valley indices of the electron and the
hole. These finite-velocity light cones allow unprecedented possibilities to
optically inject valley polarization and valley current, and the observation of
both direct and inverse valley Hall effects, by exciting interlayer excitons.
Our findings suggest potential excitonic circuits with valley functionalities,
and unique opportunities to study exciton dynamics and condensation phenomena
in semiconducting 2D heterostructures.Comment: Including the Supplemental Material
Moir\'e excitons: from programmable quantum emitter arrays to spin-orbit coupled artificial lattices
Highly uniform and ordered nanodot arrays are crucial for high performance
quantum optoelectronics including new semiconductor lasers and single photon
emitters, and for synthesizing artificial lattices of interacting
quasiparticles towards quantum information processing and simulation of
many-body physics. Van der Waals heterostructures of 2D semiconductors are
naturally endowed with an ordered nanoscale landscape, i.e. the moir\'e pattern
that laterally modulates electronic and topographic structures. Here we find
these moir\'e effects realize superstructures of nanodot confinements for
long-lived interlayer excitons, which can be either electrically or strain
tuned from perfect arrays of quantum emitters to excitonic superlattices with
giant spin-orbit coupling (SOC). Besides the wide range tuning of emission
wavelength, the electric field can also invert the spin optical selection rule
of the emitter arrays. This unprecedented control arises from the gauge
structure imprinted on exciton wavefunctions by the moir\'e, which underlies
the SOC when hopping couples nanodots into superlattices. We show that the
moir\'e hosts complex-hopping honeycomb superlattices, where exciton bands
feature a Dirac node and two Weyl nodes, connected by spin-momentum locked
topological edge modes.Comment: To appear in Science Advance
Spin-valley qubit in nanostructures of monolayer semiconductors: Optical control and hyperfine interaction
We investigate the optical control possibilities of spin-valley qubit carried
by single electrons localized in nanostructures of monolayer TMDs, including
small quantum dots formed by lateral heterojunction and charged impurities. The
quantum controls are discussed when the confinement induces valley
hybridization and when the valley hybridization is absent. We show that the
bulk valley and spin optical selection rules can be inherited in different
forms in the two scenarios, both of which allow the definition of spin-valley
qubit with desired optical controllability. We also investigate nuclear spin
induced decoherence and quantum control of electron-nuclear spin entanglement
via intervalley terms of the hyperfine interaction. Optically controlled
two-qubit operations in a single quantum dot are discussed.Comment: 17pages, 10 figure
- …