143 research outputs found

    Network-Constrained Unit Commitment with Flexible Temporal Resolution

    Full text link
    Modern network-constrained unit commitment (NCUC) bears a heavy computational burden due to the ever-growing model scale. This situation becomes more challenging when detailed operational characteristics, complicated constraints, and multiple objectives are considered. We propose a novel simplification method to determine the flexible temporal resolution for acceleration and near-optimal solutions. The flexible temporal resolution is determined by analyzing the impact on generators in each adaptive time period with awareness of congestion effects. Additionally, multiple improvements are employed on the existing NCUC model compatible with flexible temporal resolution to reduce the number of integer variables while preserving the original features. A case study using the IEEE 118-bus and the Polish 2736-bus systems verifies that the proposed method achieves substantial acceleration with low cost variation and high accuracy.Comment: 11 pages, 10 figures. Accepted by IEEE Transactions on Power System

    Effectiveness of denoising diffusion probabilistic models for fast and high-fidelity whole-event simulation in high-energy heavy-ion experiments

    Full text link
    Artificial intelligence (AI) generative models, such as generative adversarial networks (GANs), variational auto-encoders, and normalizing flows, have been widely used and studied as efficient alternatives for traditional scientific simulations. However, they have several drawbacks, including training instability and inability to cover the entire data distribution, especially for regions where data are rare. This is particularly challenging for whole-event, full-detector simulations in high-energy heavy-ion experiments, such as sPHENIX at the Relativistic Heavy Ion Collider and Large Hadron Collider experiments, where thousands of particles are produced per event and interact with the detector. This work investigates the effectiveness of Denoising Diffusion Probabilistic Models (DDPMs) as an AI-based generative surrogate model for the sPHENIX experiment that includes the heavy-ion event generation and response of the entire calorimeter stack. DDPM performance in sPHENIX simulation data is compared with a popular rival, GANs. Results show that both DDPMs and GANs can reproduce the data distribution where the examples are abundant (low-to-medium calorimeter energies). Nonetheless, DDPMs significantly outperform GANs, especially in high-energy regions where data are rare. Additionally, DDPMs exhibit superior stability compared to GANs. The results are consistent between both central and peripheral centrality heavy-ion collision events. Moreover, DDPMs offer a substantial speedup of approximately a factor of 100 compared to the traditional Geant4 simulation method.Comment: 11 pages, 7 figure

    Rethinking CycleGAN: Improving Quality of GANs for Unpaired Image-to-Image Translation

    Full text link
    An unpaired image-to-image (I2I) translation technique seeks to find a mapping between two domains of data in a fully unsupervised manner. While the initial solutions to the I2I problem were provided by the generative adversarial neural networks (GANs), currently, diffusion models (DM) hold the state-of-the-art status on the I2I translation benchmarks in terms of FID. Yet, they suffer from some limitations, such as not using data from the source domain during the training, or maintaining consistency of the source and translated images only via simple pixel-wise errors. This work revisits the classic CycleGAN model and equips it with recent advancements in model architectures and model training procedures. The revised model is shown to significantly outperform other advanced GAN- and DM-based competitors on a variety of benchmarks. In the case of Male2Female translation of CelebA, the model achieves over 40% improvement in FID score compared to the state-of-the-art results. This work also demonstrates the ineffectiveness of the pixel-wise I2I translation faithfulness metrics and suggests their revision. The code and trained models are available at https://github.com/LS4GAN/uvcgan

    Implementation of ACTS into sPHENIX track reconstruction

    Full text link
    sPHENIX is a high energy nuclear physics experiment under construction at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory (BNL). The primary physics goals of sPHENIX are to study the quark-gluon-plasma, as well as the partonic structure of protons and nuclei, by measuring jets, their substructure, and heavy flavor hadrons in pp++pp, pp+Au, and Au+Au collisions. sPHENIX will collect approximately 300 PB of data over three run periods, to be analyzed using available computing resources at BNL; thus, performing track reconstruction in a timely manner is a challenge due to the high occupancy of heavy ion collision events. The sPHENIX experiment has recently implemented the A Common Tracking Software (ACTS) track reconstruction toolkit with the goal of reconstructing tracks with high efficiency and within a computational budget of 5 seconds per minimum bias event. This paper reports the performance status of ACTS as the default track fitting tool within sPHENIX, including discussion of the first implementation of a time projection chamber geometry within ACTS

    Evaluating Portable Parallelization Strategies for Heterogeneous Architectures in High Energy Physics

    Full text link
    High-energy physics (HEP) experiments have developed millions of lines of code over decades that are optimized to run on traditional x86 CPU systems. However, we are seeing a rapidly increasing fraction of floating point computing power in leadership-class computing facilities and traditional data centers coming from new accelerator architectures, such as GPUs. HEP experiments are now faced with the untenable prospect of rewriting millions of lines of x86 CPU code, for the increasingly dominant architectures found in these computational accelerators. This task is made more challenging by the architecture-specific languages and APIs promoted by manufacturers such as NVIDIA, Intel and AMD. Producing multiple, architecture-specific implementations is not a viable scenario, given the available person power and code maintenance issues. The Portable Parallelization Strategies team of the HEP Center for Computational Excellence is investigating the use of Kokkos, SYCL, OpenMP, std::execution::parallel and alpaka as potential portability solutions that promise to execute on multiple architectures from the same source code, using representative use cases from major HEP experiments, including the DUNE experiment of the Long Baseline Neutrino Facility, and the ATLAS and CMS experiments of the Large Hadron Collider. This cross-cutting evaluation of portability solutions using real applications will help inform and guide the HEP community when choosing their software and hardware suites for the next generation of experimental frameworks. We present the outcomes of our studies, including performance metrics, porting challenges, API evaluations, and build system integration.Comment: 18 pages, 9 Figures, 2 Table

    Ultrafast X-ray scattering offers a structural view of excited-state charge transfer

    Get PDF
    Intramolecular charge transfer and the associated changes in molecular structure in N,N'-dimethylpiperazine are tracked using femtosecond gas-phase X-ray scattering. The molecules are optically excited to the 3p state at 200 nm. Following rapid relaxation to the 3s state, distinct charge-localized and charge-delocalized species related by charge transfer are observed. The experiment determines the molecular structure of the two species, with the redistribution of electron density accounted for by a scattering correction factor. The initially dominant charge-localized state has a weakened carbon-carbon bond and reorients one methyl group compared with the ground state. Subsequent charge transfer to the charge-delocalized state elongates the carbon-carbon bond further, creating an extended 1.634 Ã… bond, and also reorients the second methyl group. At the same time, the bond lengths between the nitrogen and the ring-carbon atoms contract from an average of 1.505 to 1.465 Ã…. The experiment determines the overall charge transfer time constant for approaching the equilibrium between charge-localized and charge-delocalized species to 3.0 ps
    • …
    corecore