78 research outputs found

    On bosonic limits of two recent supersymmetric extensions of the Harry Dym hierarchy

    Full text link
    Two generalized Harry Dym equations, recently found by Brunelli, Das and Popowicz in the bosonic limit of new supersymmetric extensions of the Harry Dym hierarchy [J. Math. Phys. 44:4756--4767 (2003)], are transformed into previously known integrable systems: one--into a pair of decoupled KdV equations, the other one--into a pair of coupled mKdV equations from a bi-Hamiltonian hierarchy of Kupershmidt.Comment: 7 page

    Cyclic bases of zero-curvature representations: five illustrations to one concept

    Full text link
    The paper contains five examples of using cyclic bases of zero-curvature representations in studies of weak and strong Lax pairs, hierarchies of evolution systems, and recursion operators.Comment: 18 page

    Integrability of Kersten-Krasil'shchik coupled KdV-mKdV equations: singularity analysis and Lax pair

    Full text link
    The integrability of a coupled KdV-mKdV system is tested by means of singularity analysis. The true Lax pair associated with this system is obtained by the use of prolongation technique.Comment: 9 page

    A strange recursion operator for a new integrable system of coupled Korteweg - de Vries equations

    Full text link
    A recursion operator is constructed for a new integrable system of coupled Korteweg - de Vries equations by the method of gauge-invariant description of zero-curvature representations. This second-order recursion operator is characterized by unusual structure of its nonlocal part.Comment: 12 pages, final versio

    Backlund transformation and special solutions for Drinfeld-Sokolov-Satsuma-Hirota system of coupled equations

    Get PDF
    Using the Weiss method of truncated singular expansions, we construct an explicit Backlund transformation of the Drinfeld-Sokolov-Satsuma-Hirota system into itself. Then we find all the special solutions generated by this transformation from the trivial zero solution of this system.Comment: LaTeX, 5 page

    Symmetrically coupled higher-order nonlinear Schroedinger equations: singularity analysis and integrability

    Full text link
    The integrability of a system of two symmetrically coupled higher-order nonlinear Schr\"{o}dinger equations with parameter coefficients is tested by means of the singularity analysis. It is proven that the system passes the Painlev\'{e} test for integrability only in ten distinct cases, of which two are new. For one of the new cases, a Lax pair and a multi-field generalization are obtained; for the other one, the equations of the system are uncoupled by a nonlinear transformation.Comment: 12 pages, LaTeX2e, IOP style, final version, to appear in J.Phys.A:Math.Ge

    On integrability of the differential constraints arising from the singularity analysis

    Full text link
    Integrability of the differential constraints arising from the singularity analysis of two (1+1)-dimensional second-order evolution equations is studied. Two nonlinear ordinary differential equations are obtained in this way, which are integrable by quadratures in spite of very complicated branching of their solutions.Comment: arxiv version is already offcia
    corecore