16 research outputs found

    Directed Functional Connectivity in Fronto-Centroparietal Circuit Correlates with Motor Adaptation in Gait Training

    Get PDF
    Lower-extremity robotic exoskeletons are used in gait rehabilitation to achieve functional motor recovery. To date, little is known about how gait training and post-training are characterized in brain signals and their causal connectivity. In this work, we used time-domain partial Granger causality (PGC) analysis to elucidate the directed functional connectivity of electroencephalogram (EEG) signals of healthy adults in robot-assisted gait training (RAGT). Our results confirm the presence of EEG rhythms and corticomuscular relationships during standing and walking using spectral and coherence analyses. The PGC analysis revealed enhanced connectivity close to sensorimotor areas (C3 and CP4) during standing, whereas additional connectivities involve the centroparietal (CPz) and frontal (Fz) areas during walking with respect to standing. In addition, significant fronto-centroparietal causal effects were found during both training and post-training. Strong correlations were also found between kinematic errors and fronto-centroparietal connectivity during training and post-training. This study suggests fronto-centroparietal connectivity as a potential neuromarker for motor learning and adaptation in RAGT

    Mapping & decoding cortical engagement during motor imagery, mental arithmetic, and silent word generation using MEG

    Get PDF
    Accurate quantification of cortical engagement during mental imagery tasks remains a challenging brain-imaging problem with immediate relevance to developing brain–computer interfaces. We analyzed magnetoencephalography (MEG) data from 18 individuals completing cued motor imagery, mental arithmetic, and silent word generation tasks. Participants imagined movements of both hands (HANDS) and both feet (FEET), subtracted two numbers (SUB), and silently generated words (WORD). The task-related cortical engagement was inferred from beta band (17–25 Hz) power decrements estimated using a frequency-resolved beamforming method. In the hands and feet motor imagery tasks, beta power consistently decreased in premotor and motor areas. In the word and subtraction tasks, beta-power decrements showed engagements in language and arithmetic processing within the temporal, parietal, and inferior frontal regions. A support vector machine classification of beta power decrements yielded high accuracy rates of 74 and 68% for classifying motor-imagery (HANDS vs. FEET) and cognitive (WORD vs. SUB) tasks, respectively. From the motor-versus-nonmotor contrasts, excellent accuracy rates of 85 and 80% were observed for hands-versus-word and hands-versus-sub, respectively. A multivariate Gaussian-process classifier provided an accuracy rate of 60% for the four-way (HANDS-FEET-WORD-SUB) classification problem. Individual task performance was revealed by within-subject correlations of beta-decrements. Beta-power decrements are helpful metrics for mapping and decoding cortical engagement during mental processes in the absence of sensory stimuli or overt behavioral outputs. Markers derived based on beta decrements may be suitable for rehabilitation purposes, to characterize motor or cognitive impairments, or to treat patients recovering from a cerebral stroke

    Cluster-permutation statistical analysis for high-dimensional brain-wide functional connectivity mapping

    Get PDF
    Brain functional connectivity (FC) analyses based on magnetoencephalographic (MEG) signals have yet to exploit the intrinsic high-dimensional information. Typically, these analyses are constrained to regions of interest to avoid the curse of dimensionality, which leads to conservative hypothesis testing. We removed such constraint by extending cluster-permutation statistics for high-dimensional MEG-FC analyses. We demonstrated the feasibility of this approach by identifying MEG-FC resting-state changes in mild cognitive impairment (MCI), a prodromal stage of Alzheimer’s disease. We found dense clusters of increased connectivity strength in MCI compared to healthy controls (hypersynchronization), in delta (1-4 Hz) and higher-theta (6-8 Hz) bands oscillations. These clusters mainly consisted of interactions between occipitofrontal and occipitotemporal regions in the left hemisphere and could potentially be used as neuromarkers of early progression in Alzheimer’s disease. Our novel approach can be used to generate high-resolution statistical FC maps for neuroimaging studies in general

    High-dimensional brain-wide functional connectivity mapping in magnetoencephalography

    Get PDF
    Background Brain functional connectivity (FC) analyses based on magneto/electroencephalography (M/EEG) signals have yet to exploit the intrinsic high-dimensional information. Typically, these analyses are constrained to regions of interest to avoid the curse of dimensionality, with the latter leading to conservative hypothesis testing. New method We removed such constraint by estimating high-dimensional source-based M/EEG-FC using cluster-permutation statistic (CPS) and demonstrated the feasibility of this approach by identifying resting-state changes in mild cognitive impairment (MCI), a prodromal stage of Alzheimer’s disease. Particularly, we proposed a unified framework for CPS analysis together with a novel neighbourhood measure to estimate more compact and neurophysiological plausible neural communication. As clusters could more confidently reveal interregional communication, we proposed and tested a cluster-strength index to demonstrate other advantages of CPS analysis. Results We found clusters of increased communication or hypersynchronization in MCI compared to healthy controls in delta (1−4 Hz) and higher-theta (6−8 Hz) bands oscillations. These mainly consisted of interactions between occipitofrontal and occipitotemporal regions in the left hemisphere, which may be critically affected in the early stages of Alzheimer’s disease. Conclusions Our approach could be important to create high-resolution FC maps from neuroimaging studies in general, allowing the multimodal analysis of neural communication across multiple spatial scales. Particularly, FC clusters more robustly represent the interregional communication by identifying dense bundles of connections that are less sensitive to inter-individual anatomical and functional variability. Overall, this approach could help to better understand neural information processing in healthy and disease conditions as needed for developing biomarker research

    Multi-Kernel Learning with Dartel Improves Combined MRI-PET Classification of Alzheimer’s Disease in AIBL Data: Group and Individual Analyses

    Get PDF
    Magnetic resonance imaging (MRI) and positron emission tomography (PET) are neuroimaging modalities typically used for evaluating brain changes in Alzheimer’s disease (AD). Due to their complementary nature, their combination can provide more accurate AD diagnosis or prognosis. In this work, we apply a multi-modal imaging machine-learning framework to enhance AD classification and prediction of diagnosis of subject-matched gray matter MRI and Pittsburgh compound B (PiB)-PET data related to 58 AD, 108 mild cognitive impairment (MCI) and 120 healthy elderly (HE) subjects from the Australian imaging, biomarkers and lifestyle (AIBL) dataset. Specifically, we combined a Dartel algorithm to enhance anatomical registration with multi-kernel learning (MKL) technique, yielding an average of >95% accuracy for three binary classification problems: AD-vs.-HE, MCI-vs.-HE and AD-vs.-MCI, a considerable improvement from individual modality approach. Consistent with t-contrasts, the MKL weight maps revealed known brain regions associated with AD, i.e., (para)hippocampus, posterior cingulate cortex and bilateral temporal gyrus. Importantly, MKL regression analysis provided excellent predictions of diagnosis of individuals by r2 = 0.86. In addition, we found significant correlations between the MKL classification and delayed memory recall scores with r2 = 0.62 (p < 0.01). Interestingly, outliers in the regression model for diagnosis were mainly converter samples with a higher likelihood of converting to the inclined diagnostic category. Overall, our work demonstrates the successful application of MKL with Dartel on combined neuromarkers from different neuroimaging modalities in the AIBL data. This lends further support in favor of machine learning approach in improving the diagnosis and risk prediction of AD
    corecore