3,360 research outputs found
Recommended from our members
Orthopedic Surgery Planning Based on the Integration of Reverse Engineering and Rapid Prototyping
This paper describes orthopedic surgical planning based on the integration of RE and RP.
Using symmetrical characteristics of the human body, CAD data of the original bone without
damages for the injured extent are generated from a mirror transformation of undamaged bone
data for the uninjured extent. The physical model before the injury is manufactured from RP
apparatus. Surgical planning, such as the selection of the proper implant, pre-forming of the
implant, decision of fixation positions and incision sizes, etc., is determined by a physical
simulation using the physical model. In order to examine the applicability and efficiency of
surgical planning technology for orthopedics, various case studies, such as a proximal tibia
plateau fracture, a distal tibia comminuted fracture and an iliac wing fracture of pelvis, are
carried out. As a result of the examination, it has been shown that the orthopedic surgical
planning based on the integration of RE and RP is an efficient surgical tool.Mechanical Engineerin
Wave Run-Up Phenomenon on Offshore Platforms: Part 1. Tension Leg Platform
This study reports on an extensive experimental campaign carried out to evaluate non-linear waves applied to offshore structures in extreme marine environments. An offshore tension leg platform (TLP) model was used to observe the waves around a fixed-type offshore structure. The wave amplitude measured in the experiments of this study was indicated as a wave run-up ratio. Both the first-order analysis and the analysis of the entire wave amplitude were described. The experimental results were compared with the calculations from a potential-based code in order to verify the effectiveness of the developed technology
Prediction for Irregular Ocean Wave and Floating Body Motion by Regularization: Part 1. Irregular Wave Prediction
Ocean waves can be explained in terms of many factors, including wave spectrum, which has the characteristics of wave height and periodicity, directional spreading function, which has a directional property, and random phase, which randomly represents a certain property. Under the assumption of a linear system, ocean waves show irregular behaviours, which can be observed in the forms of wave spectrum, directional spreading function, and complex phase calculations using the method of linear superposition. Ocean waves, which include a variety of periodic elements, exhibit direct proportionality between their period and propagation velocity. The purpose of this study was to understand the phase components of the period and to make exact calculations on the deterministic phase in order to make predictions on ocean waves. However, measurements of actual ocean waves exist only in the form of information on wave elevation, so we faced an inverse problem of having to analyse this information and calculate the deterministic phase. Regularization was used as part of the solution, and various methods were used to obtain stable values
Prediction for Irregular Ocean Wave and Floating Body Motion by Regularization: Part 2. Motion Prediction
In the analysis of the motion of a floating body, the domains can broadly be divided into the frequency domain and the time domain. The essence of the frequency domain analysis lies in calculating the hydrodynamic coefficient from the equation of motion, which has six degrees of freedom, by applying several methods. In this research, Bureau Veritas’s “HydroStar” software was used, and the comparison and the verification were carried out by experiments. For the time domain analysis, we used an existing method proposed by Cummins and made motion predictions by using deterministic random phases calculated in the time domain calculations of the excitation force. Lastly, the potential of wave and motion predictions was verified through the data obtained from a motion analysis experiment using a tension leg platform in the context of irregular waves
Ultra -ideals in lattice implication algebras
summary:We define an ultra -ideal of a lattice implication algebra and give equivalent conditions for an -ideal to be ultra. We show that every subset of a lattice implication algebra which has the finite additive property can be extended to an ultra -ideal
Ordered homomorphisms and kernels of ordered BCI-algebras
Recently Yang-Roh-Jun introduced the notion of ordered BCI-algebras as a
generalization of BCI-algebras. They also introduced the notions of
homomorphisms and kernels of ordered BCI-algebras and investigated related
properties. Here we extend their investigation to ordered homomorphisms, i.e.,
order-preserving homomorphisms. To this end, the notions of ordered
homomorphism and kernel of ordered BCI-algebras are first defined. Next,
properties associated with (ordered) subalgebras, (ordered) filters and direct
products of ordered BCI-algebras are addressed
REMOTE SENSING OF WAVE DIRECTIONALITY BY TWO-DIMENSIONAL DIRECTIONAL WAVELETS: PART 1. THE DETECTION TOOLS OF DIRECTIONALITY IN SIGNALS
This paper presents the results of a study investigating methods of wave directionality based on wavelet transform. In part 1 of this paper, the theoretical background and characteristics of directional wavelet were discussed. Morlet wavelet and Cauchy wavelet were examined to test their efficiency in detection of directionality in signals. These wavelets were tested on numerical images which were considered to describe the basic characteristics of directionality of ocean waves
- …