50 research outputs found

    Enhancing 2D Growth of Organic Semiconductor Thin Films with Macroporous Structures via a Small-Molecule Heterointerface

    Get PDF
    The physical structure of an organic solid is strongly affected by the surface of the underlying substrate. Controlling this interface is an important issue to improve device performance in the organic electronics community. Here we report an approach that utilizes an organic heterointerface to improve the crystallinity and control the morphology of an organic thin film. Pentacene is used as an active layer above, and m-bis(triphenylsilyl) benzene is used as the bottom layer. Sequential evaporations of these materials result in extraordinary morphology with far fewer grain boundaries and myriad nanometre-sized pores. These peculiar structures are formed by difference in molecular interactions between the organic layers and the substrate surface. The pentacene film exhibits high mobility up to 6.3 cm(2)V(-1)s(-1), and the pore-rich structure improves the sensitivity of organic-transistor-based chemical sensors. Our approach opens a new way for the fabrication of nanostructured semiconducting layers towards high-performance organic electronics.X116049Nsciescopu

    An Ultrathin Conformable Vibration-Responsive Electronic Skin for Quantitative Vocal Recognition

    Get PDF
    Flexible and skin-attachable vibration sensors have been studied for use as wearable voice-recognition electronics. However, the development of vibration sensors to recognize the human voice accurately with a flat frequency response, a high sensitivity, and a flexible/conformable form factor has proved a major challenge. Here, we present an ultrathin, conformable, and vibration-responsive electronic skin that detects skin acceleration, which is highly and linearly correlated with voice pressure. This device consists of a crosslinked ultrathin polymer film and a hole-patterned diaphragm structure, and senses voices quantitatively with an outstanding sensitivity of 5.5 V Pa-1 over the voice frequency range. Moreover, this ultrathin device (<5 mu m) exhibits superior skin conformity, which enables exact voice recognition because it eliminates vibrational distortion on rough and curved skin surfaces. Our device is suitable for several promising voice-recognition applications, such as security authentication, remote control systems and vocal healthcare.11Ysciescopu

    Open X-Embodiment:Robotic learning datasets and RT-X models

    Get PDF
    Large, high-capacity models trained on diverse datasets have shown remarkable successes on efficiently tackling downstream applications. In domains from NLP to Computer Vision, this has led to a consolidation of pretrained models, with general pretrained backbones serving as a starting point for many applications. Can such a consolidation happen in robotics? Conventionally, robotic learning methods train a separate model for every application, every robot, and even every environment. Can we instead train "generalist" X-robot policy that can be adapted efficiently to new robots, tasks, and environments? In this paper, we provide datasets in standardized data formats and models to make it possible to explore this possibility in the context of robotic manipulation, alongside experimental results that provide an example of effective X-robot policies. We assemble a dataset from 22 different robots collected through a collaboration between 21 institutions, demonstrating 527 skills (160266 tasks). We show that a high-capacity model trained on this data, which we call RT-X, exhibits positive transfer and improves the capabilities of multiple robots by leveraging experience from other platforms. The project website is robotics-transformer-x.github.io

    Controlling the Adhesion between Flexible Substrate and Carrier Wafer

    No full text
    1

    A New Flexible Substrate Structure to Use Brittle Conductors in Flexible Electronics

    No full text
    1

    Non-Invasive Quantitative Muscle Fatigue Estimation Based on Correlation Between sEMG Signal and Muscle Mass

    No full text
    Muscle fatigue is required to be assessed in real-time to maintain the best physical condition, especially for sports and rehabilitation areas. In recent years, numerous studies proposed muscle fatigue estimation methods with non-invasive surface electromyography (sEMG). However, the previous approaches were limited to discerning whether muscle fatigue occurs and were unable to quantify the fatigue level due to individual differences in muscle characteristics. In this study, we propose a novel method for quantitative muscle fatigue estimation that is applicable for various people without individual calibration. Because muscle mass is closely related to muscular endurance, it is utilized as a standard parameter in our assessment process. We introduce a new concept of muscle fatigue score (MFS), based on the cosine similarity between muscle mass and representative fatigue indicators. The MFS exhibits a high correlation coefficient ( jR j = 0 :7398) with key muscle characteristics compared to previous representative muscle fatigue indicators calculated from sEMG: mean frequency ( jR j = 0 :2848), median frequency ( jR j = 0 :1972), and low-frequency ratio R j = 0 :0346).11Yscopu

    Fabrication of Nanoparticle-Deposited Flexible Electrode and Its Application on Biopotential Sensing

    No full text
    2
    corecore