21 research outputs found

    Highly Sensitive Real-Time Monitoring of Adenosine Receptor Activities in Nonsmall Cell Lung Cancer Cells Using Carbon Nanotube Field-Effect Transistors

    No full text
    Adenosine metabolism through adenosine receptors plays a critical role in lung cancer biology. Although recent studies showed the potential of targeting adenosine receptors as drug targets for lung cancer treatment, conventional methods for investigating receptor activities often suffer from various drawbacks, including low sensitivity and slow analysis speed. In this study, adenosine receptor activities in nonsmall cell lung cancer (NSCLC) cells were monitored in real time with high sensitivity through a carbon nanotube field-effect transistor (CNT-FET). In this method, we hybridized a CNT-FET with NSCLC cells expressing A2A and A2B adenosine receptors to construct a hybrid platform. This platform could detect adenosine, an endogenous ligand of adenosine receptors, down to 1 fM in real time and sensitively discriminate adenosine among other nucleosides. Furthermore, we could also utilize the platform to detect adenosine in complicated environments, such as human serum. Notably, our hybrid platform allowed us to monitor pharmacological effects between adenosine and other drugs, including dipyridamole and theophylline, even in human serum samples. These results indicate that the NSCLC cell-hybridized CNT-FET can be a practical tool for biomedical applications, such as the evaluation and screening of drug-candidate substances

    Bioelectronic Tongues Mimicking Insect Taste Systems for Real-Time Discrimination between Natural and Artificial Sweeteners

    No full text
    A bioelectronic tongue (B-ET) mimicking insect taste systems is developed for the real-time detection and discrimination of natural and artificial sweeteners. Here, a carbon nanotube field-effect transistor (CNT-FET) was hybridized with nanovesicles including the honeybee sugar taste receptor, gustatory receptor 1 of Apis mellifera (AmGr1). This strategy allowed us to detect glucose, a major component of nectar, down to 100 fM in real time and identify sweet tastants from other tastants. It could also be utilized for the detection of glucose in dextrose tablet solutions. Importantly, we demonstrated the discrimination between natural and artificial sweeteners down to 10 pM even in real beverages such as decaffeinated coffee using our hybrid platform. In this respect, our B-ET mimicking insect taste systems can be a powerful tool for various applications such as food screening and basic studies on insect taste systems

    Changes of corner vowel durations according to the bulbar UMN or LMN signs.

    No full text
    The durations of three corner vowels were significantly longer in patients who had both the UMN and LMN signs than in those who did not. Patients with solely LMN signs had longer vowel durations than those with UMN signs, but there were no statistically significant differences. Abbreviations: UMN, upper motor neuron; LMN, lower motor neuron.</p

    Korean vowel diagram.

    No full text
    The tongue moves vertically and horizontally within the oral cavity, and corner vowels (/a/, /i/, and /u/) differ in the position of the tongue when pronounced. Each vowel in the vowel diagram has a unique first (F1) and second formant (F2).</p

    Association between ALSFRS-R speech subscore and vowel parameters.

    No full text
    As the ALSFRS-R subscore decreased, the durations of three corner vowels were inversely prolonged (A). The VSA decreased along with the ALSFRS-R subscore both in male and female (B). Abbreviations: ALS, amyotrophic lateral sclerosis; ALSFRS-R, ALS Functional Rating Scale-Revised; VSA, vowel space area.</p

    Comparisons of vowel parameters between groups.

    No full text
    The available quantitative methods for evaluating bulbar dysfunction in patients with amyotrophic lateral sclerosis (ALS) are limited. We aimed to characterize vowel properties in Korean ALS patients, investigate associations between vowel parameters and clinical features of ALS, and analyze subclinical articulatory changes of vowel parameters in those with perceptually normal voices. Forty-three patients with ALS (27 with dysarthria and 16 without dysarthria) and 20 healthy controls were prospectively collected in the study. Dysarthria was assessed using the ALS Functional Rating Scale-Revised (ALSFRS-R) speech subscores, with any loss of 4 points indicating the presence of dysarthria. The structured speech samples were recorded and analyzed using Praat software. For three corner vowels (/a/, /i/, and /u/), data on the vowel duration, fundamental frequency, frequencies of the first two formants (F1 and F2), harmonics-to-noise ratio, vowel space area (VSA), and vowel articulation index (VAI) were extracted from the speech samples. Corner vowel durations were significantly longer in ALS patients with dysarthria than in healthy controls. The F1 frequency of /a/, F2 frequencies of /i/ and /u/, the VSA, and the VAI showed significant differences between ALS patients with dysarthria and healthy controls. The area under the curve (AUC) was 0.912. The F1 frequency of /a/ and the VSA were the major determinants for differentiating ALS patients who had not yet developed apparent dysarthria from healthy controls (AUC 0.887). In linear regression analyses, as the ALSFRS-R speech subscore decreased, both the VSA and VAI were reduced. In contrast, vowel durations were found to be rather prolonged. The analyses of vowel parameters provided a useful metric correlated with disease severity for detecting subclinical bulbar dysfunction in ALS patients.</div

    Black Phosphorus-Based Reusable Biosensor Platforms for the Ultrasensitive Detection of Cortisol in Saliva

    No full text
    A black phosphorus (BP)-based reusable biosensor platform is developed for the repeated and real-time detection of cortisol using antibody-conjugated magnetic particle (MP) structures as a refreshable receptor. Here, we took advantage of the low-noise characteristics of a mechanically exfoliated BP-based field-effect transistor (FET) and hybridized it with anti-cortisol antibody-functionalized MPs to build a highly sensitive cortisol sensor. This strategy allowed us to detect cortisol down to 1 aM in real time and discriminate cortisol from other hormones. In this case, we could easily remove MPs with used antibodies from the surface of a BP-FET and reuse the chip for up to eight repeated sensing operations. Moreover, since our platform could be fabricated using conventional photolithography techniques and the sensor can be reused multiple times, one should be able to significantly reduce operation costs for practical applications. Furthermore, this method could be utilized to detect different hormones with high sensitivity and selectivity in complex environments such as artificial saliva solutions. In this respect, our reusable BP-FET biosensing platform can be a powerful tool for versatile applications such as clinical diagnosis and basic biological analysis by conjugating various antibodies
    corecore