69 research outputs found

    Metal-organic framework-based biosensing platforms for the sensitive determination of trace elements and heavy metals: A comprehensive review

    Get PDF
    Heavy metals in food and water sources are potentially harmful to humans. Determination of these pollutants is critical for improving safety. Effective recognition systems are a contemporary challenge; several novel technologies for the quick, easy, selective, and sensitive determination of these compounds are in demand. Metal-organic framework (MOF)-based sensors and biosensors have crucial applications in identifying these potentially harmful substances. Here, we review electrochemical and optical biosensors for in situ sensing that are sensitive and cost effective, with a simple protocol and wide linear range. Despite the abundance of articles in this field, we assessed and checked out various basic features of MOFs as porous compounds that include clusters or ions, and some of the ligands connected to these clusters have a variety of useful properties. Afterward, we also assessed various electrochemical and optical sensing assays, which have recently gathered interest because of their potential applications for recognizing certain compounds in the environment. Their operation and approaches are dependent on their structures, the materials and component types used, and the substances they are targeting

    Toward Green Synthesis of Graphene Oxide Using Recycled Sulfuric Acid via Couette-Taylor Flow

    Get PDF
    Developing eco-friendly and cost-effective processes for the synthesis of graphene oxide (GO) is essential for its widespread industrial applications. In this work, we propose a green synthesis technique for GO production using recycled sulfuric acid and filter-processed oxidized natural graphite obtained from a Couette-Taylor flow reactor. The viscosity of reactant mixtures processed from Couette-Taylor flow was considerably lower (???200 cP at 25 ??C) than that of those from Hummers' method, which enabled the simple filtration process. The filtered sulfuric acid can be recycled and reused for the repetitive GO synthesis with negligible differences in the as-synthesized GO qualities. This removal of sulfuric acid has great potential in lowering the overall GO production cost as the amount of water required during the fabrication process, which takes a great portion of the total production cost, can be dramatically reduced after such acid filtration. The proposed eco-friendly GO fabrication process is expected to promote the commercial application of graphene materials into industry shortly

    Comparing Graphene Oxide and Reduced Graphene Oxide as Blending Materials for Polysulfone and Polyvinylidene Difluoride Membranes

    No full text
    Graphene is a single atomic plane of graphite, and it exhibits unique electronic, thermal, and mechanical properties. Exfoliated graphene oxide (GO) contains various hydrophilic functional groups, such as hydroxyl, epoxide, and carboxyl groups, that can modify the hydrophobic characteristics of a membrane surface. Though reduced graphene oxide (rGO) has fewer functional groups than GO, its associated sp2 structures and physical properties can be recovered. A considerable amount of research has focused on the use of GO to obtain a pristine graphene material via reduction processes. In this study, polysulfone (PSf) and polyvinylidene fluoride (PVDF) membranes that were blended with GO and rGO, respectively, were fabricated by using the immersion phase inversion method and an n-methylpyrrolidone (NMP) solvent. Results showed that the graphene nanomaterials, GO and rGO, can change the pore morphology (size and structure) of both PSf and PVDF membranes. The optimum content of both was then investigated, and the highest flux enhancement was observed with the 0.10 wt% GO-blended PSf membrane. The presence of functional groups in GO within prepared PSf and PVDF membranes alters the membrane characteristics to hydrophilic. An antifouling test and rejection efficiency evaluation also showed that the 0.10 wt% membrane provided the best performance.</jats:p

    Comparing Graphene Oxide and Reduced Graphene Oxide as Blending Materials for Polysulfone and Polyvinylidene Difluoride Membranes

    No full text
    Graphene is a single atomic plane of graphite, and it exhibits unique electronic, thermal, and mechanical properties. Exfoliated graphene oxide (GO) contains various hydrophilic functional groups, such as hydroxyl, epoxide, and carboxyl groups, that can modify the hydrophobic characteristics of a membrane surface. Though reduced graphene oxide (rGO) has fewer functional groups than GO, its associated sp2 structures and physical properties can be recovered. A considerable amount of research has focused on the use of GO to obtain a pristine graphene material via reduction processes. In this study, polysulfone (PSf) and polyvinylidene fluoride (PVDF) membranes that were blended with GO and rGO, respectively, were fabricated by using the immersion phase inversion method and an n-methylpyrrolidone (NMP) solvent. Results showed that the graphene nanomaterials, GO and rGO, can change the pore morphology (size and structure) of both PSf and PVDF membranes. The optimum content of both was then investigated, and the highest flux enhancement was observed with the 0.10 wt% GO-blended PSf membrane. The presence of functional groups in GO within prepared PSf and PVDF membranes alters the membrane characteristics to hydrophilic. An antifouling test and rejection efficiency evaluation also showed that the 0.10 wt% membrane provided the best performance

    Insights into sustainability of engineered carbonaceous material-based technologies for advanced cyanide removal from wastewater

    No full text
    Cyanide (CN) is a serious concern in industrial and goldmine wastewater. Strict regulatory standards have been established by various agencies due to the detrimental effects that CN has on human health. Therefore, before discharge to water bodies or land, it is essential to create a sustainable model for the safe removal of CN. Carbon-based materials are well known for their adsorption and oxidation features, which can be conducive to CN removal. This paper reviews the relevant literature on the application of modified and unmodified carbon-based materials to CN removal in water; these materials include activated carbon (AC), graphene, graphene oxide (GO), and carbon nanotubes (CNTs). Moreover, CN removal mechanisms and photocatalytic removal of CN are comprehensively discussed, with a particular emphasis on modifying carbon-based materials. It has been observed that adding various elements to carbon-based materials improves their surface area, functional groups, CN adsorption capacity, and pore volume. Impacts of operational parameters, isotherm models, kinetics, and types of carbon-based materials are also outlined. This study provides insight into the real-scale applicability of carbon-based materials for CN removal from waters. Moreover, this review indicates that essential work on CN removal using carbon-based materials is still needed. Future research should focus on developing modified carbon-based materials to encourage multidisciplinary research. The most crucial gap in the literature is that the studies have been performed on a lab scale. Therefore, further pilot and real-scale applications should be conducted. Overall, the cost assessment, environmental effects, and human health risks of carbon-based materials should be studied in future research to achieve a realistic perspective on applicability on an industrial scale
    corecore