3,458 research outputs found

    Brain amyloid in preclinical Alzheimer\u27s disease is associated with increased driving risk

    Get PDF
    INTRODUCTION: Postmortem studies suggest that fibrillar brain amyloid places people at higher risk for hazardous driving in the preclinical stage of Alzheimer's disease (AD). METHODS: We administered driving questionnaires to 104 older drivers (19 AD, 24 mild cognitive impairment, and 61 cognitive normal) who had a recent (18)F-florbetapir positron emission tomography scan. We examined associations of amyloid standardized uptake value ratios with driving behaviors: traffic violations or accidents in the past 3 years. RESULTS: The frequency of violations or accidents was curvilinear with respect to standardized uptake value ratios, peaking around a value of 1.1 (model r(2) = 0.10, P = .002); moreover, this relationship was evident for the cognitively normal participants. DISCUSSION: We found that driving risk is strongly related to accumulating amyloid on positron emission tomography, and that this trend is evident in the preclinical stage of AD. Brain amyloid burden may in part explain the increased crash risk reported in older adults

    Disruption of cholinergic neurotransmission, within a cognitive challenge paradigm, is indicative of Aβ-related cognitive impairment in preclinical Alzheimer’s disease after a 27-month delay interval

    Get PDF
    Background Abnormal beta-amyloid (Aβ) is associated with deleterious changes in central cholinergic tone in the very early stages of Alzheimer’s disease (AD), which may be unmasked by a cholinergic antagonist (J Prev Alzheimers Dis 1:1–4, 2017). Previously, we established the scopolamine challenge test (SCT) as a “cognitive stress test” screening measure to identify individuals at risk for AD (Alzheimer’s & Dementia 10(2):262–7, 2014) (Neurobiol. Aging 36(10):2709-15, 2015). Here we aim to demonstrate the potential of the SCT as an indicator of cognitive change and neocortical amyloid aggregation after a 27-month follow-up interval. Methods Older adults (N = 63, aged 55–75 years) with self-reported memory difficulties and first-degree family history of AD completed the SCT and PET amyloid imaging at baseline and were then seen for cognitive testing at 9, 18, and 27 months post-baseline. Repeat PET amyloid imaging was completed at the time of the 27-month exam. Results Significant differences in both cognitive performance and in Aβ neocortical burden were observed between participants who either failed vs. passed the SCT at baseline, after a 27-month follow-up period. Conclusions Cognitive response to the SCT (Alzheimer’s & Dementia 10(2):262–7, 2014) at baseline is related to cognitive change and PET amyloid imaging results, over the course of 27 months, in preclinical AD. The SCT may be a clinically useful screening tool to identify individuals who are more likely to both have positive evidence of amyloidosis on PET imaging and to show measurable cognitive decline over several years

    Measurements of D0D^{0} and DD^{*} Production in pp + pp Collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We report measurements of charmed-hadron (D0D^{0}, DD^{*}) production cross sections at mid-rapidity in pp + pp collisions at a center-of-mass energy of 200 GeV by the STAR experiment. Charmed hadrons were reconstructed via the hadronic decays D0Kπ+D^{0}\rightarrow K^{-}\pi^{+}, D+D0π+Kπ+π+D^{*+}\rightarrow D^{0}\pi^{+}\rightarrow K^{-}\pi^{+}\pi^{+} and their charge conjugates, covering the pTp_T range of 0.6-2.0 GeV/cc and 2.0-6.0 GeV/cc for D0D^{0} and D+D^{*+}, respectively. From this analysis, the charm-pair production cross section at mid-rapidity is dσ/dyy=0ccˉd\sigma/dy|_{y=0}^{c\bar{c}} = 170 ±\pm 45 (stat.) 59+38^{+38}_{-59} (sys.) μ\mub. The extracted charm-pair cross section is compared to perturbative QCD calculations. The transverse momentum differential cross section is found to be consistent with the upper bound of a Fixed-Order Next-to-Leading Logarithm calculation.Comment: 15 pages, 16 figures. Revised version submitted to Phys. Rev.

    Beam energy dependent two-pion interferometry and the freeze-out eccentricity of pions in heavy ion collisions at STAR

    Get PDF
    We present results of analyses of two-pion interferometry in Au+Au collisions at sNN\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass (mTm_{T}) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes in the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.Comment: 27 pages; 27 figure

    Inclusive charged hadron elliptic flow in Au + Au collisions at sNN\sqrt{s_{NN}} = 7.7 - 39 GeV

    Get PDF
    A systematic study is presented for centrality, transverse momentum (pTp_T) and pseudorapidity (η\eta) dependence of the inclusive charged hadron elliptic flow (v2v_2) at midrapidity(η<1.0|\eta| < 1.0) in Au+Au collisions at sNN\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27 and 39 GeV. The results obtained with different methods, including correlations with the event plane reconstructed in a region separated by a large pseudorapidity gap and 4-particle cumulants (v24v_2{4}), are presented in order to investigate non-flow correlations and v2v_2 fluctuations. We observe that the difference between v22v_2{2} and v24v_2{4} is smaller at the lower collision energies. Values of v2v_2, scaled by the initial coordinate space eccentricity, v2/εv_{2}/\varepsilon, as a function of pTp_T are larger in more central collisions, suggesting stronger collective flow develops in more central collisions, similar to the results at higher collision energies. These results are compared to measurements at higher energies at the Relativistic Heavy Ion Collider (sNN\sqrt{s_{NN}} = 62.4 and 200 GeV) and at the Large Hadron Collider (Pb + Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV). The v2(pT)v_2(p_T) values for fixed pTp_T rise with increasing collision energy within the pTp_T range studied (<2GeV/c< 2 {\rm GeV}/c). A comparison to viscous hydrodynamic simulations is made to potentially help understand the energy dependence of v2(pT)v_{2}(p_{T}). We also compare the v2v_2 results to UrQMD and AMPT transport model calculations, and physics implications on the dominance of partonic versus hadronic phases in the system created at Beam Energy Scan (BES) energies are discussed.Comment: 20 pages, 12 figures. Version accepted by PR

    Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC

    Get PDF
    Local parity-odd domains are theorized to form inside a Quark-Gluon-Plasma (QGP) which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect (CME). The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this paper, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy, and tends to vanish by 7.7 GeV. The implications of these results for the CME will be discussed.Comment: 6 pages, 4 figures, accepted by Phys. Rev. Lett (more model comparisons have been added in version 2
    corecore