24 research outputs found
Table_1_Gestational TSH and FT4 Reference Intervals in Chinese Women: A Systematic Review and Meta-Analysis.DOCX
<p>Background: Serum thyroid-stimulating hormone (TSH) and free thyroxine (FT4) change dynamically during pregnancy. Differences in geographic regions, populations, and manufacturer's methodologies can affect the reference intervals for thyroid function tests. The 2017 guidelines of the American Thyroid Association (ATA) recommended 4.0 mU/L as the cut-off point for the upper limit of serum TSH in early pregnancy. A systematic review is called for to establish practical, gestational-specific TSH and FT4 reference intervals for pregnant Chinese women and to explore whether the criteria are suitable for China.</p><p>Methods: English and Chinese articles published from inception to Aug 2017 were searched in the PubMed, EMBASE, and SCIE English-language databases and the CNKI, WanFang, and CQVIP Chinese databases. The relative descent or ascent rates of serum TSH and FT4 were calculated, after which Comprehensive Meta-Analysis V2.0 software was used to analyze the data.</p><p>Results: Eleven studies (6 in English and 5 in Chinese), five kits and 11,629 Chinese women from nine cities were considered in this meta-analysis. Compared with the reference ranges provided by manufacturers, serum TSH decreased in the first trimester, with the upper limit declining by 21.7% (5.0–36.6%), to a value close to 4.0 mU/L, and the lower limit declining by 85.7% (73.5–97.1%). It continued decreasing in the second trimester, with the upper limit declining by 24.0% (6.4–40.9%) and the lower limit declining by 40.7% (9.0–85.7%). For FT4, the upper limit fluctuated slightly, and the lower limit increased by 6.8% (1.0–14.6%) in the first trimester. Serum FT4 dropped gradually, with the upper limit declining by 21.8% (2.5–31.8%) and the lower limit declining by 12.7% (2.6–19.6%) in the second trimester. During the third trimester, the upper limit decreased by 25.1% (12.7–35.0%), while the lower limit decreased by 20.9% (14.8–27.3%).</p><p>Conclusions: Various regions, kits and test methods affect the gestational TSH and FT4 levels. The non-pregnant serum TSH upper limit minus 22% is very close to 4.0 mU/L, which can be used as a sub-optimal approach to represent the cut-off value for pregnant Chinese women in the first trimester.</p
Subclinical Hypothyroidism and Type 2 Diabetes: A Systematic Review and Meta-Analysis
<div><p>Background</p><p>Abundant evidence suggests an association between subclinical hypothyroidism (SCH) and type 2 diabetes mellitus (T2DM), but small sample sizes and inconclusive data in the literature complicate this assertion.</p><p>Objective</p><p>We measured the prevalence of SCH in T2DM population, and investigated whether T2DM increase the risk of SCH and whether SCH was associated with diabetic complications.</p><p>METHODS</p><p>We conducted a meta-analysis using PubMed, EMBASE, Web of Science, Wan Fang, CNKI and VIP databases for literature search. We obtained studies published between January 1, 1980 to December 1, 2014. The studies were selected to evaluate the prevalence of SCH in T2DM subjects, compare the prevalence of SCH in T2DM subjects with those non-diabetics, and investigate whether diabetic complications were more prevalent in SCH than those who were euthyroid. Fixed and random effects meta-analysis models were used, and the outcome was presented as a pooled prevalence with 95% confidence interval (95% CI) or a summary odds ratio (OR) with 95% CI.</p><p>RESULTS</p><p>Through literature search, 36 articles met the inclusion criteria and these articles contained a total of 61 studies. Funnel plots and Egger’s tests showed no publication bias in our studies, except for the pooled prevalence of SCH in T2DM (<i>P</i> = 0.08) and OR for SCH in T2DM (<i>P</i> = 0.04). Trim and fill method was used to correct the results and five potential missing data were replaced respectively. The adjusted pooled prevalence of SCH in T2DM patients was 10.2%, meanwhile, T2DM was associated with a 1.93-fold increase in risk of SCH (95% CI: 1.66, 2.24). Furthermore, SCH might affect the development of diabetic complications with an overall OR of 1.74 (95% CI: 1.34, 2.28) for diabetic nephropathy, 1.42 (95% CI: 1.21, 1.67) for diabetic retinopathy, 1.85 (95% CI: 1.35, 2.54) for peripheral arterial disease, and 1.87 (95% CI: 1.06, 3.28) for diabetic peripheral neuropathy.</p><p>Conclusions</p><p>T2DM patients are more likely to have SCH when compared with healthy population and SCH may be associated with increased diabetic complications. It is necessary to screen thyroid function in patients with T2DM, and appropriate individualized treatments in addition to thyroid function test should be given to T2DM patients with SCH as well.</p></div
Table_2_Gestational TSH and FT4 Reference Intervals in Chinese Women: A Systematic Review and Meta-Analysis.DOCX
<p>Background: Serum thyroid-stimulating hormone (TSH) and free thyroxine (FT4) change dynamically during pregnancy. Differences in geographic regions, populations, and manufacturer's methodologies can affect the reference intervals for thyroid function tests. The 2017 guidelines of the American Thyroid Association (ATA) recommended 4.0 mU/L as the cut-off point for the upper limit of serum TSH in early pregnancy. A systematic review is called for to establish practical, gestational-specific TSH and FT4 reference intervals for pregnant Chinese women and to explore whether the criteria are suitable for China.</p><p>Methods: English and Chinese articles published from inception to Aug 2017 were searched in the PubMed, EMBASE, and SCIE English-language databases and the CNKI, WanFang, and CQVIP Chinese databases. The relative descent or ascent rates of serum TSH and FT4 were calculated, after which Comprehensive Meta-Analysis V2.0 software was used to analyze the data.</p><p>Results: Eleven studies (6 in English and 5 in Chinese), five kits and 11,629 Chinese women from nine cities were considered in this meta-analysis. Compared with the reference ranges provided by manufacturers, serum TSH decreased in the first trimester, with the upper limit declining by 21.7% (5.0–36.6%), to a value close to 4.0 mU/L, and the lower limit declining by 85.7% (73.5–97.1%). It continued decreasing in the second trimester, with the upper limit declining by 24.0% (6.4–40.9%) and the lower limit declining by 40.7% (9.0–85.7%). For FT4, the upper limit fluctuated slightly, and the lower limit increased by 6.8% (1.0–14.6%) in the first trimester. Serum FT4 dropped gradually, with the upper limit declining by 21.8% (2.5–31.8%) and the lower limit declining by 12.7% (2.6–19.6%) in the second trimester. During the third trimester, the upper limit decreased by 25.1% (12.7–35.0%), while the lower limit decreased by 20.9% (14.8–27.3%).</p><p>Conclusions: Various regions, kits and test methods affect the gestational TSH and FT4 levels. The non-pregnant serum TSH upper limit minus 22% is very close to 4.0 mU/L, which can be used as a sub-optimal approach to represent the cut-off value for pregnant Chinese women in the first trimester.</p
The Risk of Metabolic Syndrome in Patients with Rheumatoid Arthritis: A Meta-Analysis of Observational Studies
<div><p>Background</p><p>Observational studies suggest an association between the incidence of rheumatoid arthritis (RA) and the prevalence of metabolic syndrome (MetS). However, the relationship between RA and MetS is controversial and research in this area is currently lacking.</p> <p>Objective</p><p>The aim of this study was to assess whether the prevalence of MetS was higher in a group of RA patients compared to subjects without RA.</p> <p>Design</p><p>A PubMed database search was conducted during April 2013 to identify observational studies of RA and risk of MetS. Reference lists of retrieved articles were also reviewed. Two authors independently extracted information on the study design, the characteristics of the study participants, exposure and outcome assessments, and the method used to control for potential confounding factors. A random-effects model was used for the risk estimates.</p> <p>Results</p><p>Our meta-analysis of four cross-sectional controlled studies plus eight case-control studies involving a total of 2283 cases and 4403 controls identified a significant association between RA and risk of MetS, with an overall OR of 1.24 (95% CI, 1.03-1.50).</p> <p>Conclusion</p><p>This meta-analysis provides further evidence supporting patients with RA have a higher prevalence of MetS than subjects without RA. In addition, the geographic region of the population and the criteria used for MetS diagnosis could influence the association. However, these observations would need to be evaluated using prospective, randomized studies.</p> </div
Trim and fill analysis for prevalence of SCH in T2DM.
<p>Trim and fill analysis for prevalence of SCH in T2DM.</p