1,229 research outputs found
Transport through a single Anderson impurity coupled to one normal and two superconducting leads
We study the interplay between the Kondo and Andreev-Josephson effects in a
quantum dot coupled to one normal and two superconducting (SC) leads. In the
large gap limit, the low-energy states of this system can be described exactly
by a local Fermi liquid for the interacting Bogoliubov particles. The phase
shift and the renormalized parameters for the Bogoliubov particles vary
depending on the Josephson phase between the two SC leads. We explore the
precise features of a crossover that occurs between the Kondo singlet and local
Cooper-pairing states as the Josephson phase varies, using the numerical
renormalization group approach.Comment: 4 pages, 4 figures, contribution to SCES 201
Conductance of a helical edge liquid coupled to a magnetic impurity
Transport in an ideal two-dimensional quantum spin Hall device is dominated
by the counterpropagating edge states of electrons with opposite spins, giving
the universal value of the conductance, . We study the effect on the
conductance of a magnetic impurity, which can backscatter an electron from one
edge state to the other. In the case of isotropic Kondo exchange we find that
the correction to the electrical conductance caused by such an impurity
vanishes in the dc limit, while the thermal conductance does acquire a finite
correction due to the spin-flip backscattering.Comment: 5 pages, 2 figure
Correlated electron transport through double quantum dots coupled to normal and superconducting leads
We study Andreev transport through double quantum dots connected in series
normal and superconducting (SC) leads, using the numerical renormalization
group. The ground state of this system shows a crossover between a local
Cooper-pairing singlet state and a Kondo singlet state, which is caused by the
competition between the Coulomb interaction and the SC proximity. We show that
the ground-state properties reflect this crossover especially for small values
of the inter-dot coupling , while in the opposite case, for large ,
another singlet with an inter-dot character becomes dominant. We find that the
conductance for the local SC singlet state has a peak with the unitary-limit
value . In contrast, the Andreev reflection is suppressed in the Kondo
regime by the Coulomb interaction. Furthermore, the conductance has two
successive peaks in the transient region of the crossover. It is further
elucidated that the gate voltage gives a different variation into the
crossover. Specifically, as the energy level of the dot that is coupled to the
normal lead varies, the Kondo screening cloud is deformed to a long-range
singlet bond.Comment: 11 pages, 10 figure
Interplay of Kondo and superconducting correlations in the nonequilibrium Andreev transport through a quantum dot
Using the modified perturbation theory, we theoretically study the
nonequilibrium Andreev transport through a quantum dot coupled to normal and
superconducting leads (N-QD-S), which is strongly influenced by the Kondo and
superconducting correlations. From the numerical calculation, we find that the
renormalized couplings between the leads and the dot in the equilibrium states
characterize the peak formation in the nonequilibrium differential conductance.
In particular, in the Kondo regime, the enhancement of the Andreev transport
via a Kondo resonance occurs in the differential conductance at a finite bias
voltage, leading to an anomalous peak whose position is given by the
renormalized parameters. In addition to the peak, we show that the energy
levels of the Andreev bound states give rise to other peaks in the differential
conductance in the strongly correlated N-QD-S system. All these features of the
nonequilibrium transport are consistent with those in the recent experimental
results [R. S. Deacon {\it et al.}, Phys. Rev. Lett. {\bf 104}, 076805 (2010);
Phys. Rev. B {\bf 81}, 12308 (2010)]. We also find that the interplay of the
Kondo and superconducting correlations induces an intriguing pinning effect of
the Andreev resonances to the Fermi level and its counter position.Comment: 22 pages, 23 figure
Interference Effects on Kondo-Assisted Transport through Double Quantum Dots
We systematically investigate electron transport through double quantum dots
with particular emphasis on interference induced via multiple paths of electron
propagation. By means of the slave-boson mean-field approximation, we calculate
the conductance, the local density of states, the transmission probability in
the Kondo regime at zero temperature. It is clarified how the Kondo-assisted
transport changes its properties when the system is continuously changed among
the serial, parallel and T-shaped double dots. The obtained results for the
conductance are explained in terms of the Kondo resonances influenced by
interference effects. We also discuss the impacts due to the spin-polarization
of ferromagnetic leads.Comment: 9 pages, 11 figures ; minor corrections and references adde
- …