2 research outputs found

    Specially-Made Lipid-Based Assemblies for Improving Transmembrane Gene Delivery: Comparison of Basic Amino Acid Residue Rich Periphery

    No full text
    Cationic lipid based assemblies provide a promising platform for effective gene condensation into nanosized particles, and the peripheral properties of the assemblies are vital for complexation and interaction with physical barriers. Here, we report three cationic twin head lipids, and each of them contains a dioleoyl-glutamate hydrophobic tail and a twin polar head of lysine, arginine, or histidine. Such lipids were proven to self-assemble in aqueous solution with well-defined nanostructures and residual amino-, guanidine-, or imidazole-rich periphery, showing strong buffering capacity and good liquidity. The assemblies with arginine (RL) or lysine (KL) periphery exhibited positive charges (∼+35 mV) and complete condensation of pDNA into nanosized complexes (∼120 nm). In contrast, assemblies composed of histidine-rich lipids (HL) showed relatively low cationic electric potential (∼+10 mV) and poor DNA binding ability. As expected, the designed RL assemblies with guanidine-rich periphery enhanced the <i>in vitro</i> gene transfection up to 190-fold as compared with the golden standard PEI<sub>25k</sub> and Lipofectamine 2000, especially in the presence of serum. Meanwhile, interaction with cell and endo/lysosome membrane also revealed the superiority of RL complexes, that the guanidine-rich surface efficiently promoted transmembrane process in cellular internalization and endosomal disruption. More importantly, RL complexes also succeeded beyond others <i>in vivo</i> with significantly (∼7-fold) enhanced expression in HepG2 tumor xenografts in mice, as well as stronger green fluorescence protein imaging in isolated tumors and tumor frozen sections

    Highly Stable Fluorinated Nanocarriers with iRGD for Overcoming the Stability Dilemma and Enhancing Tumor Penetration in an Orthotopic Breast Cancer

    No full text
    The stability dilemma and limited tumor penetration of nanocarriers in cancer chemotherapy remain two predominant challenges for their successful clinical translation. Herein, the pH-sensitive fluorocarbon-functionalized nanocarriers (SFNs) with a tumor-homing and penetrating peptide iRGD are reported to overcome the stability dilemma and enhance tumor accumulation and penetration in an orthotopic breast cancer. The highly stable SFNs with a low critical association concentration provide a safe and spacious harbor for hydrophobic drugs. Furthermore, the stimulus-responsive evaluation and <i>in vitro</i> drug release study show that the SFNs can balance intracellular dissociation for drug release and extracellular stability in the blood circulation. Additionally, the tumor penetration capacity has been dramatically enhanced in 3D multicellular spheroids, effectively affecting cells far from the periphery. This can be ascribed to the coadministration of iRGD having tumor-penetrating ability and fluorocarbon chains having good cell membrane permeability. The combination of SFNs and iRGD is a viable approach to assist drugs’ effective accumulation in primary and metastasized tumor sites, significantly inhibiting the breast tumor growth and curbing lung and liver metastases in an orthotopic-tumor-bearing mouse model. Taken together, this pH-sensitive fluorinated nanosystem having excellent stability and tumor accumulation and penetration properties paves the way to combat cancer
    corecore