29 research outputs found

    Dietary Lysozyme Alters Sow’s Gut Microbiota, Serum Immunity and Milk Metabolite Profile

    Get PDF
    The aim of current study was to determine variations in sow’s gut microbiota, serum immunity, and milk metabolite profile mediated by lysozyme supplementation. Twenty-four pregnant sows were assigned to a control group without supplementation and two treatments with 0.5 kg/t and 1.0 kg/t lysozyme provided in formula feed for 21 days (n = 8 per treatment). Microbiota analysis and metagenomic predictions were based on 16s RNA high-throughput sequencing. Milk metabolome was assessed by untargeted liquid chromatography tandem mass spectrometry. Serum biochemical indicators and immunoglobulins were also determined. Gut microbial diversity of sows receiving 1.0 kg/t lysozyme treatment was significantly reduced after the trial. Spirochaetes, Euryarchaeota, and Actinobacteria significantly increased while Firmicutes showed a remarkable reduction in 1.0 kg/t group compared with control. Lysozyme addition rebuilt sow’s gut microbiota to beneficial composition identified by reduced richness of Escherichia coli and increased abundance of Lactobacillus amylovorus. Accordingly, microbial metabolic functions including pyrimidine metabolism, purine metabolism, and amino acid related enzymes were significantly up-regulated in 1.0 kg/t group. Microbial metabolic phenotypes like the richness of Gram-positive bacteria and oxidative stress tolerance were also significantly reduced by lysozyme treatment. Serum alanine transaminase (ALT) activity and IgA levels were significantly down-regulated in the 1.0 kg/t group compared with control, but IgM levels showed a significantly increase in 1.0 kg/t group. Milk metabolites such as L-glutamine, creatine, and L-arginine showed significantly dose-dependent changes after treatment. Overall, lysozyme supplementation could effectively improve the composition, metabolic functions, and phenotypes of sow’s gut microbiota and it also benefit sows with better serum immunity and milk composition. This research could provide theoretical support for further application of lysozyme in promoting animal gut health and prevent pathogenic infections in livestock production

    The Effect of Electrode-Electrolyte Interface on the Electrochemical Impedance Spectra for Positive Electrode in Li-Ion Battery

    Get PDF
    Understanding the effect of electrode-electrolyte interface (EEI) on the kinetics of electrode reaction is critical to design high-energy Li-ion batteries. While electrochemical impedance spectroscopy (EIS) is used widely to examine the kinetics of electrode reaction in Li-ion batteries, ambiguities exist in the physical origin of EIS responses for composite electrodes. In this study, we performed EIS measurement by using a three-electrode cell with a mesh-reference electrode, to avoid the effect of counter electrode impedance and artefactual responses due to asymmetric cell configuration, and composite or oxide-only working electrodes. Here we discuss the detailed assignment of impedance spectra for LiCoO[subscript 2] as a function of voltage. The high-frequency semicircle was assigned to the impedance associated with ion adsorption and desorption at the electrified interface while the low-frequency semicircle was related to the charge transfer impedance associated with desolvation/solvation of lithium ions, and lithium ion intercalation/de-intercalation into/from LixCoO[subscript 2]. Exposure to higher charging voltages and greater hold time at high voltages led to no significant change for the high-frequency component but greater resistance and greater activation energy for the low-frequency circle. The greater charge transfer impedance was attributed to the growth of EEI layers on the charged LixCoO[subscript 2] surface associated with electrolyte oxidation promoted by ethylene carbonate dehydrogenation. Keywords: Batteries - Lithium, Electrode Kinetics, EIS, Electrode-Electrolyte Interface, Li-ion BatteriesBMW Grou

    Theory of coupled ion-electron transfer kinetics

    Full text link
    The microscopic theory of chemical reactions is based on transition state theory, where atoms or ions transfer classically over an energy barrier, as electrons maintain their ground state. Electron transfer is fundamentally different and occurs by tunneling in response to solvent fluctuations. Here, we develop the theory of coupled ion-electron transfer, in which ions and solvent molecules fluctuate cooperatively to facilitate electron transfer. We derive a general formula of the reaction rate that depends on the overpotential, solvent properties, the electronic structure of the electron donor/acceptor, and the excess chemical potential of ions in the transition state. For Faradaic reactions, the theory predicts curved Tafel plots with a concentration-dependent reaction-limited current. For moderate overpotentials, our formula reduces to the Butler-Volmer equation and explains its relevance, not only in the well-known limit of large electron-transfer (solvent reorganization) energy, but also in the opposite limit of large ion-transfer energy. The rate formula is applied to Li-ion batteries, where reduction of the electrode host material couples with ion insertion. In the case of lithium iron phosphate, the theory accurately predicts the concentration dependence of the exchange current measured by {\it in operando} X-Ray microscopy without any adjustable parameters. These results pave the way for interfacial engineering to enhance ion intercalation rates, not only for batteries, but also for ionic separations and neuromorphic computing

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Stability Trend of Metal–Organic Frameworks with Heterometal-Modified Hexanuclear Zr Building Units

    No full text
    Bimetallic metal–organic frameworks (MOFs) based on heterometal-modified hexanuclear Zr building units have emerged as promising materials for applications in energy-related fields such as heterogenous catalysis/electrocatalysis. However, their stability remains a challenge under some practical conditions, and the physical/chemical origin to the (in)stability is not well-understood. Herein, we selected three representative Zr-MOFs (MOF-808, NU-1000, and UiO-66) as platforms and incorporated different heterometals (Ti4+, V3+, V5+, Cr3+, Cr6+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+) to form a series of bimetallic M/Zr-MOFs. Their stability was examined in aqueous solutions of various pH to define their stability windows and understand their stability trend. The stability of M/Zr-MOFs was found to be dictated by the oxidation states of incorporated heterometals and slightly affected by the supporting Zr-MOFs. Water-exchange rate constant, defined as the rate constant by replacing a coordinated water with a solution water, was proposed as the stability descriptor to explain the stability trend and guide the design and application of future stable MOFs

    Data-Driven and Knowledge-Guided Heterogeneous Graphs and Temporal Convolution Networks for Flood Forecasting

    No full text
    Data-driven models have been successfully applied to flood prediction. However, the nonlinearity and uncertainty of the prediction process and the possible noise or outliers in the data set will lead to incorrect results. In addition, data-driven models are only trained from available datasets and do not involve scientific principles or laws during the model training process, which may lead to predictions that do not conform to physical laws. To this end, we propose a flood prediction method based on data-driven and knowledge-guided heterogeneous graphs and temporal convolutional networks (DK-HTAN). In the data preprocessing stage, a low-rank approximate decomposition algorithm based on a time tensor was designed to interpolate the input data. Adding an attention mechanism to the heterogeneous graph module is beneficial for introducing prior knowledge. A self-attention mechanism with temporal convolutional network was introduced to dynamically calculate spatiotemporal correlation characteristics of flood data. Finally, we propose physical mechanism constraints for flood processes, adjusted and optimized data-driven models, corrected predictions that did not conform to physical mechanisms, and quantified the uncertainty of predictions. The experimental results on the Qijiang River Basin dataset show that the model has good predictive performance in terms of interval prediction index (PI), RMSE, and MAPE

    A high-rate and high-efficiency molten-salt sodium–oxygen battery

    No full text
    Alkali metal–oxygen batteries can provide greater specific energy than Li-ion batteries but often suffer from low power density, cycleability, and energy efficiency due to the sluggish kinetics of the oxygen electrode and parasitic reactions at both the oxygen and alkali metal electrodes. In this study, we demonstrated a molten-salt Na–O2 battery operating at 443 K with high areal energy (33 mW h cm2 geo) and power densities (19 mW cm2 geo), with high energy efficiency (B90% at 5 mA cm2 geo), and stable cycling (400 cycles with no capacity loss). Raman, pressure tracking and titration measurements were used to show that the dominant discharge product is Na2O2. Moreover, the redox activity of nitrate anions in the molten salt was found to be critical to enable the formation of Na2O2. Through 18O-labeling experiments as well as discharging Na–Ar cells, we demonstrated that the discharge reaction occurs via the electrochemical reduction of NaNO3 to Na2O and NaNO2, where chemical reactions with O2 lead to the formation of Na2O2 from Na2O, and the regeneration of NaNO3 from NaNO2

    Transcriptome Profile Analysis of Intestinal Upper Villus Epithelial Cells and Crypt Epithelial Cells of Suckling Piglets

    No full text
    It is well known that the small intestinal epithelial cells of mammals rapidly undergo differentiation, maturation, and apoptosis. However, few studies have defined the physiological state and gene expression changes of enterocytes along the crypt-villus axis in suckling piglets. In the present study, we obtained the intestinal upper villus epithelial cells (F1) and crypt epithelial cells (F3) of 21-day suckling piglets using the divalent chelation and precipitation technique. The activities of alkaline phosphatase, sucrase, and lactase of F1 were significantly higher (p < 0.05) than those of F3. To explore the differences at the gene transcription level, we compared the global transcriptional profiles of F1 and F3 using RNA-seq analysis technology. A total of 672 differentially expressed genes (DEGs) were identified between F1 and F3, including 224 highly expressed and 448 minimally expressed unigenes. Functional analyses indicated that some DEGs were involved in the transcriptional regulation of nutrient transportation (SLC15A1, SLC5A1, and SLC3A1), cell differentiation (LGR5, HOXA5 and KLF4), cell proliferation (PLK2 and TGFB3), transcriptional regulation (JUN, FOS and ATF3), and signaling transduction (WNT10B and BMP1), suggesting that these genes were related to intestinal epithelial cell maturation and cell renewal. Gene Ontology (GO) enrichment analysis showed that the DEGs were mainly associated with binding, catalytic activity, enzyme regulator activity, and molecular transducer activity. Furthermore, KEGG pathway analysis revealed that the DGEs were categorized into 284 significantly enriched pathways. The greatest number of DEGs enriched in signal transduction, some of which (Wnt, Hippo, TGF-beta, mTOR, PI3K-Akt, and MAPK signaling pathways) were closely related to the differentiation, proliferation, maturation and apoptosis of intestinal epithelial cells. We validated the expression levels of eight DEGs in F1 and F3 using qRT-PCR. The present study revealed temporal and regional changes in mRNA expression between F1 and F3 of suckling piglets, which provides insights into the regulatory mechanisms underlying intestinal epithelial cell renewal and the rapid repair of intestinal mucosal damage

    Effects of Coated Cysteamine on Oxidative Stress and Inflammation in Weaned Pigs

    No full text
    This study aimed to explore the effects of dietary coated cysteamine on oxidative stress and inflammation in diquat-induced weaning pigs. Twenty-four pigs were randomly assigned to three dietary groups with eight replicates: the control (fed base diet), diquat (fed base diet), and coated cysteamine + diquat groups (fed 80 mg/kg cysteamine). The experiment was conducted for 21 d, and consisted of a pre-starter period (14 d) and a starter period (7 d). Coated cysteamine treatment significantly increased (p < 0.05) the final weight and average daily gain (ADG) in pigs. The contents of alkaline phosphatase (ALP), immunoglobulin G (IgG), serine (Ser), and isoleucine (Ile) were elevated (p < 0.05) while the contents of albumin (ALB) and aspartic acid (Asp) were reduced (p < 0.05) in the serum after coated cysteamine supplementation. Coated cysteamine supplementation resulted in greater (p < 0.05) serum superoxide dismutase (SOD) activity, the expression of interleukin-10 (IL-10) mRNA in the colon, and the CuSOD mRNA expression in the jejunum (p < 0.05) and colon (p = 0.073). Coated cysteamine supplementation showed an increasing trend in villus height (p = 0.060), villus height/crypt depth (V/C) (p = 0.056), the expression levels of zonula occludens-1 (ZO-1) mRNA (p = 0.061), and Occludin mRNA (p = 0.074) in the jejunum. In summary, dietary supplementation with coated cysteamine improves the intestinal barrier function of the jejunum by increasing the immunoglobulin content and the relative expression of intestinal immune factor mRNA in pigs while alleviating oxidative stress and inflammatory reactions caused by diquat
    corecore