19 research outputs found

    Freeze-dissolving method: a fast green technology for producing nanoparticles and ultrafine powder

    No full text
    A new technology, a freeze-dissolving method, has been developed to isolate nanoparticles or ultrafine powder and is a more efficient and sustainable method than the traditional freeze-drying method. In this work, frozen spherical ice particles were produced with an aqueous solution of sodium bicarbonate or ammonium dihydrogen phosphate at various concentrations to generate nanoparticles of NaHCO3 or (NH4)(H2PO4). The freeze-drying method sublimates ice, and nanoparticles of NaHCO3 or (NH4)(H2PO4) in the ice templates remain. The freeze-dissolving method dissolves ice particles in a low freezing point solvent at temperatures below 0 °C, and then, nanoparticles of NaHCO3 or (NH4)(H2PO4) can be isolated after filtration. The freeze-dissolving method is 100 times faster with about 100 times less energy consumption than the freeze-drying method as demonstrated in this work with a much smaller facility footprint and produces the same quantity of nanoparticles with a more uniform size distribution.</p

    Freeze-Dissolving Method: A Fast Green Technology for Producing Nanoparticles and Ultrafine Powder

    No full text
    A new technology, a freeze-dissolving method, has been developed to isolate nanoparticles or ultrafine powder and is a more efficient and sustainable method than the traditional freeze-drying method. In this work, frozen spherical ice particles were produced with an aqueous solution of sodium bicarbonate or ammonium dihydrogen phosphate at various concentrations to generate nanoparticles of NaHCO3 or (NH4)­(H2PO4). The freeze-drying method sublimates ice, and nanoparticles of NaHCO3 or (NH4)­(H2PO4) in the ice templates remain. The freeze-dissolving method dissolves ice particles in a low freezing point solvent at temperatures below 0 °C, and then, nanoparticles of NaHCO3 or (NH4)­(H2PO4) can be isolated after filtration. The freeze-dissolving method is 100 times faster with about 100 times less energy consumption than the freeze-drying method as demonstrated in this work with a much smaller facility footprint and produces the same quantity of nanoparticles with a more uniform size distribution

    Table_1_Understanding professional development challenges of Chinese public health professionals: association and prediction analyses with data validity screening.XLS

    No full text
    BackgroundLittle is known about the public health professionals engaged in educating and training new or future researchers in public health. Research in this direction identifies their issues, concerns, challenges, and needs. This study focused on the professional development challenges of Chinese public health professionals.MethodsSnowball sampling was utilized. A total of 265 public health professionals participated. An instrument of 6 dimensions (burnout, sleep issue, mood issue, friends’ support, exercise, and challenges) was developed, revised, and administered online. Two different approaches, the conventional and data screening approaches, were applied. The former started with item quality analyses, whereas the latter began with data quality checks. The chi-square tests of associations and logistic regressions were performed on both approaches.Results and discussion19.25% of the participants were detected and deleted as careless respondents. Using both approaches, six professional development challenges except one (“Multidisciplinary learning”) were significantly associated with various demographic features. The two approaches produced different models though they converged sometimes. The latent variables of exercise predicted professional development challenges more frequently than other latent variables. Regarding correct classification rates, results from the data screening approach were comparable to those from the conventional approach.ConclusionThe latent variables of exercise, such as “Exercise effects,” “Expectations of exercise,” and “Belief in exercise,” might be understudied. More research is necessary for professional development challenges using exercise as a multidimensional construct. Based on the current study, screening and deleting careless responses in survey research is necessary.</p

    Freeze-dissolving method: a fast green technology for producing nanoparticles and ultrafine powder

    No full text
    A new technology, a freeze-dissolving method, has been developed to isolate nanoparticles or ultrafine powder and is a more efficient and sustainable method than the traditional freeze-drying method. In this work, frozen spherical ice particles were produced with an aqueous solution of sodium bicarbonate or ammonium dihydrogen phosphate at various concentrations to generate nanoparticles of NaHCO3 or (NH4)(H2PO4). The freeze-drying method sublimates ice, and nanoparticles of NaHCO3 or (NH4)(H2PO4) in the ice templates remain. The freeze-dissolving method dissolves ice particles in a low freezing point solvent at temperatures below 0 °C, and then, nanoparticles of NaHCO3 or (NH4)(H2PO4) can be isolated after filtration. The freeze-dissolving method is 100 times faster with about 100 times less energy consumption than the freeze-drying method as demonstrated in this work with a much smaller facility footprint and produces the same quantity of nanoparticles with a more uniform size distribution.</p

    Cocrystallization of urea and succinic acid in “Nano-Crystallizer”

    No full text
    In the bulk scale of crystallization, urea-succinic acid (U-SA) cocrystals have been reported to only form stable 2:1 U-SA cocrystal, without any metastable 1:1 cocrystal, by slow evaporation and cooling crystallization in an aqueous solvent. In this work, cooling crystallization and evaporation crystallization were applied in nano-crystallizers, i.e. the nano-pores in controlled pore glass (CPG). It is the first time to demonstrate that, with confined solution, it is possible to produce and maintain metastable cocrystals during the slow crystallization process, indicating the strong influences of the confinement on the phase diagram and the thermodynamic properties of the nano-scale cocrystals. The influences of the urea and succinic acid concentration and the pore size of CPG on the polymorphs and melting point of the nanocrystal have been investigated. Further understanding of the mechanism may contribute to new methods for maintaining the unstable materials and discovering new forms of pharmaceutical compounds and materials

    Table3_Targeted metabolomics analysis of nucleosides and the identification of biomarkers for colorectal adenomas and colorectal cancer.XLSX

    No full text
    The morbidity and mortality of colorectal cancer (CRC) have been increasing in recent years, and early detection of CRC can improve the survival rate of patients. RNA methylation plays crucial roles in many biological processes and has been implicated in the initiation of various diseases, including cancer. Serum contains a variety of biomolecules and is an important clinical sample for biomarker discovery. In this study, we developed a targeted metabolomics method for the quantitative analysis of nucleosides in human serum samples by using liquid chromatography with tandem mass spectrometry (LC-MS/MS). We successfully quantified the concentrations of nucleosides in serum samples from 51 healthy controls, 37 patients with colorectal adenomas, and 55 patients with CRC. The results showed that the concentrations of N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 3-methyluridine (m3U) were increased in patients with CRC, whereas the concentrations of N2-methylguanosine (m2G), 2′-O-methyluridine (Um), and 2′-O-methylguanosine (Gm) were decreased in patients with CRC, compared with the healthy controls and patients with colorectal adenomas. Moreover, the levels of 2′-O-methyluridine and 2′-O-methylguanosine were lower in patients with colorectal adenomas than those in healthy controls. Interestingly, the levels of Um and Gm gradually decreased in the following order: healthy controls to colorectal adenoma patients to CRC patients. These results revealed that the aberrations of these nucleosides were tightly correlated to colorectal adenomas and CRC. In addition, the present work will stimulate future investigations about the regulatory roles of these nucleosides in the initiation and development of CRC.</p

    Table4_Targeted metabolomics analysis of nucleosides and the identification of biomarkers for colorectal adenomas and colorectal cancer.DOCX

    No full text
    The morbidity and mortality of colorectal cancer (CRC) have been increasing in recent years, and early detection of CRC can improve the survival rate of patients. RNA methylation plays crucial roles in many biological processes and has been implicated in the initiation of various diseases, including cancer. Serum contains a variety of biomolecules and is an important clinical sample for biomarker discovery. In this study, we developed a targeted metabolomics method for the quantitative analysis of nucleosides in human serum samples by using liquid chromatography with tandem mass spectrometry (LC-MS/MS). We successfully quantified the concentrations of nucleosides in serum samples from 51 healthy controls, 37 patients with colorectal adenomas, and 55 patients with CRC. The results showed that the concentrations of N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 3-methyluridine (m3U) were increased in patients with CRC, whereas the concentrations of N2-methylguanosine (m2G), 2′-O-methyluridine (Um), and 2′-O-methylguanosine (Gm) were decreased in patients with CRC, compared with the healthy controls and patients with colorectal adenomas. Moreover, the levels of 2′-O-methyluridine and 2′-O-methylguanosine were lower in patients with colorectal adenomas than those in healthy controls. Interestingly, the levels of Um and Gm gradually decreased in the following order: healthy controls to colorectal adenoma patients to CRC patients. These results revealed that the aberrations of these nucleosides were tightly correlated to colorectal adenomas and CRC. In addition, the present work will stimulate future investigations about the regulatory roles of these nucleosides in the initiation and development of CRC.</p

    Table2_Targeted metabolomics analysis of nucleosides and the identification of biomarkers for colorectal adenomas and colorectal cancer.XLSX

    No full text
    The morbidity and mortality of colorectal cancer (CRC) have been increasing in recent years, and early detection of CRC can improve the survival rate of patients. RNA methylation plays crucial roles in many biological processes and has been implicated in the initiation of various diseases, including cancer. Serum contains a variety of biomolecules and is an important clinical sample for biomarker discovery. In this study, we developed a targeted metabolomics method for the quantitative analysis of nucleosides in human serum samples by using liquid chromatography with tandem mass spectrometry (LC-MS/MS). We successfully quantified the concentrations of nucleosides in serum samples from 51 healthy controls, 37 patients with colorectal adenomas, and 55 patients with CRC. The results showed that the concentrations of N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 3-methyluridine (m3U) were increased in patients with CRC, whereas the concentrations of N2-methylguanosine (m2G), 2′-O-methyluridine (Um), and 2′-O-methylguanosine (Gm) were decreased in patients with CRC, compared with the healthy controls and patients with colorectal adenomas. Moreover, the levels of 2′-O-methyluridine and 2′-O-methylguanosine were lower in patients with colorectal adenomas than those in healthy controls. Interestingly, the levels of Um and Gm gradually decreased in the following order: healthy controls to colorectal adenoma patients to CRC patients. These results revealed that the aberrations of these nucleosides were tightly correlated to colorectal adenomas and CRC. In addition, the present work will stimulate future investigations about the regulatory roles of these nucleosides in the initiation and development of CRC.</p

    Rapid and sustainable production of nano and micro medicine crystals via freeze-dissolving technology

    No full text
    Modern pharmaceutical manufacturing emphasizes the need for sustainable technologies. Fine particles, including nano and micro-sized crystals, are increasingly important, particularly in the production of inhalation medicines. A novel application of freeze-dissolving technology has been demonstrated in the production of metronidazole, a model drug. This process involves creating frozen spherical particles by introducing a tert-butanol solution containing dissolved metronidazole into liquid nitrogen. Various antisolvents, such as n-hexane, n-heptane, ethanol, n-propanol, n-butanol, or n-pentanol, were employed to dissolve these frozen templates at temperatures ranging from 248.15 to 278.15 K. During this process, pre-formed metronidazole fine particles within the frozen template were released into the antisolvent solution. An alternative method involved placing these frozen particles into a vacuumed freeze dryer to extract the fine particles. The new freeze-dissolving technology can save 99% both energy and time compared to the traditional freeze-drying method, demonstrating a significantly more efficient and sustainable pharmaceutical manufacturing approach.</p
    corecore