95 research outputs found
Simple Average-Case Lower Bounds for Approximate Near-Neighbor from Isoperimetric Inequalities
We prove an Omega(d/log(sw/nd)) lower bound for the average-case cell-probe complexity of deterministic or Las Vegas randomized algorithms solving approximate near-neighbor (ANN) problem in ddimensional Hamming space in the cell-probe model with w-bit cells, using a table of size s. This lower bound matches the highest known worst-case cell-probe lower bounds for any static data structure problems.
This average-case cell-probe lower bound is proved in a general framework which relates the cell-probe complexity of ANN to isoperimetric inequalities in the underlying metric space. A tighter connection between ANN lower bounds and isoperimetric inequalities is established by a stronger richness lemma proved by cell-sampling techniques
Correlation Decay up to Uniqueness in Spin Systems
We give a complete characterization of the two-state anti-ferromagnetic spin
systems which are of strong spatial mixing on general graphs. We show that a
two-state anti-ferromagnetic spin system is of strong spatial mixing on all
graphs of maximum degree at most \Delta if and only if the system has a unique
Gibbs measure on infinite regular trees of degree up to \Delta, where \Delta
can be either bounded or unbounded. As a consequence, there exists an FPTAS for
the partition function of a two-state anti-ferromagnetic spin system on graphs
of maximum degree at most \Delta when the uniqueness condition is satisfied on
infinite regular trees of degree up to \Delta. In particular, an FPTAS exists
for arbitrary graphs if the uniqueness is satisfied on all infinite regular
trees. This covers as special cases all previous algorithmic results for
two-state anti-ferromagnetic systems on general-structure graphs.
Combining with the FPRAS for two-state ferromagnetic spin systems of
Jerrum-Sinclair and Goldberg-Jerrum-Paterson, and the very recent hardness
results of Sly-Sun and independently of Galanis-Stefankovic-Vigoda, this gives
a complete classification, except at the phase transition boundary, of the
approximability of all two-state spin systems, on either degree-bounded
families of graphs or family of all graphs.Comment: 27 pages, submitted for publicatio
Counting hypergraph matchings up to uniqueness threshold
We study the problem of approximately counting matchings in hypergraphs of
bounded maximum degree and maximum size of hyperedges. With an activity
parameter , each matching is assigned a weight .
The counting problem is formulated as computing a partition function that gives
the sum of the weights of all matchings in a hypergraph. This problem unifies
two extensively studied statistical physics models in approximate counting: the
hardcore model (graph independent sets) and the monomer-dimer model (graph
matchings).
For this model, the critical activity
is the threshold for the uniqueness of Gibbs measures on the infinite
-uniform -regular hypertree. Consider hypergraphs of maximum
degree at most and maximum size of hyperedges at most . We show that
when , there is an FPTAS for computing the partition
function; and when , there is a PTAS for computing the
log-partition function. These algorithms are based on the decay of correlation
(strong spatial mixing) property of Gibbs distributions. When , there is no PRAS for the partition function or the log-partition
function unless NPRP.
Towards obtaining a sharp transition of computational complexity of
approximate counting, we study the local convergence from a sequence of finite
hypergraphs to the infinite lattice with specified symmetry. We show a
surprising connection between the local convergence and the reversibility of a
natural random walk. This leads us to a barrier for the hardness result: The
non-uniqueness of infinite Gibbs measure is not realizable by any finite
gadgets
Spatial mixing and approximation algorithms for graphs with bounded connective constant
The hard core model in statistical physics is a probability distribution on
independent sets in a graph in which the weight of any independent set I is
proportional to lambda^(|I|), where lambda > 0 is the vertex activity. We show
that there is an intimate connection between the connective constant of a graph
and the phenomenon of strong spatial mixing (decay of correlations) for the
hard core model; specifically, we prove that the hard core model with vertex
activity lambda < lambda_c(Delta + 1) exhibits strong spatial mixing on any
graph of connective constant Delta, irrespective of its maximum degree, and
hence derive an FPTAS for the partition function of the hard core model on such
graphs. Here lambda_c(d) := d^d/(d-1)^(d+1) is the critical activity for the
uniqueness of the Gibbs measure of the hard core model on the infinite d-ary
tree. As an application, we show that the partition function can be efficiently
approximated with high probability on graphs drawn from the random graph model
G(n,d/n) for all lambda < e/d, even though the maximum degree of such graphs is
unbounded with high probability.
We also improve upon Weitz's bounds for strong spatial mixing on bounded
degree graphs (Weitz, 2006) by providing a computationally simple method which
uses known estimates of the connective constant of a lattice to obtain bounds
on the vertex activities lambda for which the hard core model on the lattice
exhibits strong spatial mixing. Using this framework, we improve upon these
bounds for several lattices including the Cartesian lattice in dimensions 3 and
higher.
Our techniques also allow us to relate the threshold for the uniqueness of
the Gibbs measure on a general tree to its branching factor (Lyons, 1989).Comment: 26 pages. In October 2014, this paper was superseded by
arxiv:1410.2595. Before that, an extended abstract of this paper appeared in
Proc. IEEE Symposium on the Foundations of Computer Science (FOCS), 2013, pp.
300-30
Approximate Capacities of Two-Dimensional Codes by Spatial Mixing
We apply several state-of-the-art techniques developed in recent advances of
counting algorithms and statistical physics to study the spatial mixing
property of the two-dimensional codes arising from local hard (independent set)
constraints, including: hard-square, hard-hexagon, read/write isolated memory
(RWIM), and non-attacking kings (NAK). For these constraints, the strong
spatial mixing would imply the existence of polynomial-time approximation
scheme (PTAS) for computing the capacity. It was previously known for the
hard-square constraint the existence of strong spatial mixing and PTAS. We show
the existence of strong spatial mixing for hard-hexagon and RWIM constraints by
establishing the strong spatial mixing along self-avoiding walks, and
consequently we give PTAS for computing the capacities of these codes. We also
show that for the NAK constraint, the strong spatial mixing does not hold along
self-avoiding walks
Sampling in Potts Model on Sparse Random Graphs
We study the problem of sampling almost uniform proper q-colorings in sparse Erdos-Renyi random graphs G(n,d/n), a research initiated by Dyer, Flaxman, Frieze and Vigoda [Dyer et al., RANDOM STRUCT ALGOR, 2006]. We obtain a fully polynomial time almost uniform sampler (FPAUS) for the problem provided q>3d+4, improving the current best bound q>5.5d [Efthymiou, SODA, 2014].
Our sampling algorithm works for more generalized models and broader family of sparse graphs. It is an efficient sampler (in the same sense of FPAUS) for anti-ferromagnetic Potts model with activity 03(1-b)d+4. We further identify a family of sparse graphs to which all these results can be extended. This family of graphs is characterized by the notion of contraction function, which is a new measure of the average degree in graphs
- …