17,797 research outputs found
Transfer Learning across Networks for Collective Classification
This paper addresses the problem of transferring useful knowledge from a
source network to predict node labels in a newly formed target network. While
existing transfer learning research has primarily focused on vector-based data,
in which the instances are assumed to be independent and identically
distributed, how to effectively transfer knowledge across different information
networks has not been well studied, mainly because networks may have their
distinct node features and link relationships between nodes. In this paper, we
propose a new transfer learning algorithm that attempts to transfer common
latent structure features across the source and target networks. The proposed
algorithm discovers these latent features by constructing label propagation
matrices in the source and target networks, and mapping them into a shared
latent feature space. The latent features capture common structure patterns
shared by two networks, and serve as domain-independent features to be
transferred between networks. Together with domain-dependent node features, we
thereafter propose an iterative classification algorithm that leverages label
correlations to predict node labels in the target network. Experiments on
real-world networks demonstrate that our proposed algorithm can successfully
achieve knowledge transfer between networks to help improve the accuracy of
classifying nodes in the target network.Comment: Published in the proceedings of IEEE ICDM 201
Search Efficient Binary Network Embedding
Traditional network embedding primarily focuses on learning a dense vector
representation for each node, which encodes network structure and/or node
content information, such that off-the-shelf machine learning algorithms can be
easily applied to the vector-format node representations for network analysis.
However, the learned dense vector representations are inefficient for
large-scale similarity search, which requires to find the nearest neighbor
measured by Euclidean distance in a continuous vector space. In this paper, we
propose a search efficient binary network embedding algorithm called BinaryNE
to learn a sparse binary code for each node, by simultaneously modeling node
context relations and node attribute relations through a three-layer neural
network. BinaryNE learns binary node representations efficiently through a
stochastic gradient descent based online learning algorithm. The learned binary
encoding not only reduces memory usage to represent each node, but also allows
fast bit-wise comparisons to support much quicker network node search compared
to Euclidean distance or other distance measures. Our experiments and
comparisons show that BinaryNE not only delivers more than 23 times faster
search speed, but also provides comparable or better search quality than
traditional continuous vector based network embedding methods
- …