3,096 research outputs found

    Indoor Sport Facility Feasibility Study: Assessment, Value and Demand

    Get PDF
    A sport management organization proposed to build an indoor sport facility in a town close to a major urban area. The potential investors and stakeholders required that a feasibility study be conducted before an investment decision was made. The study examined the proposed facility through a traditional economic feasibility study and a market analysis to understand the market, possible future market demands, and potential growth opportunities. Included in the study are the key components and data analysis which led to a positive investment report

    Correlation between the bath composition and nanoporosity of DC-electrodeposited Ni-Fe alloy

    Get PDF
    The outstanding mechanical strength of as-deposited DC-electrodeposited nanocrystalline (nc) Ni-Fe alloys has been the subject of numerous researches in view of their scientific and practical interest. However, recent studies have reported a dramatic drop in ductility upon annealing above 350°C, associated with a concomitant abnormal rapid grain growth. The inherent cause has been ascribed to the presence of a detrimental product or by product in the bath, which affects either the microstructure or causes defects in the concentration and/or distribution of the as-deposited films. The present work has been inspired by the observed abnormal behaviour of annealed electrodeposited nc Ni-Fe alloy, which has here been addressed by considering the relationship between the composition of the bath (iron-chloride, nickel-sulphate solution, saccharin and ascorbic acid) and deposition defects (e.g. grain boundary pores) in the case of an nc Ni-Fe (Fe 48 wt%) alloy. The current investigations have included X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) in both as-deposited and post-annealed conditions (300°C–400°C). XPS depth profiling with Ar ion sputtering showed a significant amount of C and O impurities entrapped in the foils during deposition. As such impurities are often overlooked in common analytical techniques, new scenarios may need to be rationalised to explain the observed drop in tensile ductility of the as-deposited Ni-Fe alloys

    ΛN\Lambda N correlations from the stopped K−K^- reaction on 4{}^4He

    Full text link
    We have investigated correlations of coincident ΛN\Lambda N pairs from the stopped K−K^- reaction on 4{}^4He, and clearly observed Λp\Lambda p and Λn\Lambda n branches of the two-nucleon absorption process in the ΛN\Lambda N invariant mass spectra. In addition, non-mesonic reaction channels, which indicate possible exotic signals for the formation of strange multibaryon states, have been identified.Comment: 5 pages, 3 figures, submitted to Physical Review Letter

    Exclusive Measurement of the Nonmesonic Weak Decay of ^{5}_{\Lambda}He Hypernucleus

    Full text link
    We performed a coincidence measurement of two nucleons emitted from the nonmesonic weak decay (NMWD) of ^{5}_{\Lambda}He formed via the ^{6}Li(\pi^+,K^+) reaction. The energies of two nucleons and the pair number distributions in the opening angle between them were measured. In both np and nn pairs, we observed a clean back-to-back correlation coming from the two-body decay of \Lambda p --> n p and \Lambda n --> n n, respectively. The ratio of the nucleon pair numbers was N_{nn}/N_{np}=0.45 \pm 0.11(stat)\pm 0.03(syst) in the kinematic region of cos(theta_{NN}) < -0.8. Since each decay mode was exclusively detected, the measured ratio should be close to the ratio of \Gamma(\Lambda p --> np)/\Gamma(\Lambda n --> nn). The ratio is consistent with recent theoretical calculations based on the heavy meson/direct quark exchange picture.Comment: Submitted to Phys. Rev. lett., 4 pages, 3 figure

    Size and Shape Dependence of the Electronic Structure of Gold Nanoclusters on TiO2

    Get PDF
    Understanding the mechanism behind the superior catalytic power of single- or few-atom heterogeneous catalysts has become an important topic in surface chemistry. This is particularly the case for gold, with TiO2 being an efficient support. Here we use scanning tunneling microscopy/spectroscopy with theoretical calculations to investigate the adsorption geometry and local electronic structure of several-atom Au clusters on rutile TiO2(110), with the clusters fabricated by controlled manipulation of single atoms. Our study confirms that Au1 and Au2 clusters prefer adsorption at surface O vacancies. Au3 clusters adsorb at O vacancies in a linear-chain configuration parallel to the surface; in the absence of O vacancies they adsorb at Ti5c sites with a structure of a vertically pointing upright triangle. We find that both the electronic structure and cluster–substrate charge transfer depend critically on the cluster size, bonding configuration, and local environment. This suggests the possibility of engineering cluster selectivity for specific catalytic reactions

    Structure of a model TiO2 photocatalytic interface

    Get PDF
    The interaction of water with TiO2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO2(110) interface with water. This has provided an atomic-level understanding of the water-TiO2 interaction. However, nearly all of the previous studies of water/TiO2 interfaces involve water in the vapour phase. Here, we explore the interfacial structure between liquid water and a rutile TiO2(110) surface pre-characterized at the atomic level. Scanning tunnelling microscopy and surface X-ray diffraction are used to determine the structure, which is comprised of an ordered array of hydroxyl molecules with molecular water in the second layer. Static and dynamic density functional theory calculations suggest that a possible mechanism for formation of the hydroxyl overlayer involves the mixed adsorption of O2 and H2O on a partially defected surface. The quantitative structural properties derived here provide a basis with which to explore the atomistic properties and hence mechanisms involved in TiO2 photocatalysis

    On the rocking behavior of rigid objects

    Get PDF
    A novel formulation for the rocking motion of a rigid block on a rigid foundation is presented in this work. The traditional piecewise equations are replaced by a single ordinary differential equation. In addition, damping effects are no longer introduced by means of a coefficient of restitution but understood as the presence of impulsive forces. The agreement with the classical formalism is very good for both free rocking regime and harmonic forcing excitation
    • …
    corecore