4 research outputs found

    Formula for conferring degree to 8 pupils

    No full text
    Perfluoroalkyl chemicals (PFCs) are stable man-made compounds with many industrial and commercial uses. Concern has been raised that they may exert deleterious effects, especially on lipid regulation. We aimed to assess exposure to perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and seven other PFCs in occupational workers from a fluorochemical plant and nearby community residents, and to investigate the association between PFOA and serum biomarkers. Serum biomarkers included not only biochemical parameters, such as lipids and enzymes, but also circulating microRNAs (miRNAs). Samples were analyzed by high-pressure liquid chromatography/tandem mass spectrometry (HPLC-MS/MS). Circulating miRNA levels were detected by quantitative polymerase chain reaction (PCR). Analyses were conducted by correlation and linear regression. We detected PFOS, PFOA, perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) in all samples. The median levels of serum PFOA and PFOS were 284.34 ng/mL and 34.16 ng/mL in residents and 1635.96 ng/mL and 33.46 ng/mL in occupational participants, respectively. To our knowledge, we found for the first time that PFOA was negatively associated with high-density lipoprotein cholesterol (HDL-C) in workers using linear regression after adjusting for potential confounders. Circulating miR-26b and miR-199a-3p were elevated with serum concentration of PFOA. Although the limitations of small sample size and the cross-sectional nature of the current study constrained causal inferences, the observed associations between PFOA and these serum biomarkers warrant further study

    Prenatal and Neonatal Exposure to Perfluorooctane Sulfonic Acid Results in Changes in miRNA Expression Profiles and Synapse Associated Proteins in Developing Rat Brains

    No full text
    We previously identified a number of perfluorooctane sulfonic acid (PFOS)-responsive transcripts in developing rat brains using microarray analysis. However, the underlying mechanisms and functional consequences remain unclear. We hypothesized that microRNAs (miRNAs), which have emerged as powerful negative regulators of mRNA and protein levels, might be responsible for PFOS-induced mRNA changes and consequent neural dysfunctions. We used eight miRNA arrays to profile the expression of brain miRNAs in neonatal rats on postnatal days (PND) 1 and 7 with maternal treatment of 0 (Control) and 3.2 mg/kg of PFOS feed from gestational day 1 to PND 7, and subsequently examined six potentially altered synapse-associated proteins to evaluate presumptive PFOS-responsive functions. Twenty-four brain miRNAs on PND 1 and 17 on PND 7 were significantly altered with PFOS exposure (<i>P</i> < 0.05), with miR-466b, -672, and -297, which are critical in neurodevelopment and synapse transmission, showing a more than 5-fold reduction. Levels of three synapse-involved proteins, NGFR, TrkC, and VGLUT2, were significantly decreased with no protein up-regulated on PND 1 or 7. Perfluorooctane sulfonic acid might affect calcium actions during synapse transmission in the nervous system by interfering with SYNJ1, ITPR1, and CALM1 via their targeting miRNAs. Our results indicated that miRNA had little direct regulatory effect on the expression of mRNAs and synapse-associated proteins tested in the developing rat brain exposed to PFOS, and it seems that the PFOS-induced synaptic dysfunctions and changes in transcripts resulted from a combinatory action of biological controllers and processes, rather than directed by one single factor

    Global Liver Proteome Analysis Using iTRAQ Labeling Quantitative Proteomic Technology to Reveal Biomarkers in Mice Exposed to Perfluorooctane Sulfonate (PFOS)

    No full text
    Proteomic analysis allows detection of changes of proteins expression in organisms exposed to environmental pollutants, leading to the discovery of biomarkers of exposure and understanding of the action mechanism of toxicity. In the present study, we applied iTRAQ labeling quantitative proteomic technology for global characterization of the liver proteome in mice exposed to perfluorooctane sulfonate (PFOS). This successfully identified and quantified 1038 unique proteins. Seventy-one proteins showed a significant expression change in the treated groups (1.0, 2.5, 5.0 mg/kg of body weight) compared with the control group, and 16 proteins displayed strong dose-dependent changes. Gene ontology analysis showed that these differential proteins were significantly enriched and mainly involved in lipid metabolism, transport, biosynthetic processes, and response to stimulus. We detected significantly increased expression levels of enzymes regulating peroxisomal β-oxidationincluding long-chain acyl-CoA synthetase, acyl-CoA oxidase 1, bifunctional enzyme, and 3-ketoacyl-CoA thiolase A. PFOS also significantly induced cytochrome P450s and glutathione S-transferases that are responsible for the metabolism of xenobiotic compounds. The expressions of several proteins with important biological functions–such as cysteine sulfinic acid decarboxylase, aldehyde dehydrogenase, and apolipoprotein A-I, also correlated with PFOS exposure. Together, the present results provide insight into the molecular mechanism and biomarkers for PFOS-induced effects

    Global Liver Proteome Analysis Using iTRAQ Labeling Quantitative Proteomic Technology to Reveal Biomarkers in Mice Exposed to Perfluorooctane Sulfonate (PFOS)

    No full text
    Proteomic analysis allows detection of changes of proteins expression in organisms exposed to environmental pollutants, leading to the discovery of biomarkers of exposure and understanding of the action mechanism of toxicity. In the present study, we applied iTRAQ labeling quantitative proteomic technology for global characterization of the liver proteome in mice exposed to perfluorooctane sulfonate (PFOS). This successfully identified and quantified 1038 unique proteins. Seventy-one proteins showed a significant expression change in the treated groups (1.0, 2.5, 5.0 mg/kg of body weight) compared with the control group, and 16 proteins displayed strong dose-dependent changes. Gene ontology analysis showed that these differential proteins were significantly enriched and mainly involved in lipid metabolism, transport, biosynthetic processes, and response to stimulus. We detected significantly increased expression levels of enzymes regulating peroxisomal β-oxidationincluding long-chain acyl-CoA synthetase, acyl-CoA oxidase 1, bifunctional enzyme, and 3-ketoacyl-CoA thiolase A. PFOS also significantly induced cytochrome P450s and glutathione S-transferases that are responsible for the metabolism of xenobiotic compounds. The expressions of several proteins with important biological functions–such as cysteine sulfinic acid decarboxylase, aldehyde dehydrogenase, and apolipoprotein A-I, also correlated with PFOS exposure. Together, the present results provide insight into the molecular mechanism and biomarkers for PFOS-induced effects
    corecore