144 research outputs found

    Defect-Driven Heterogeneous Electron Transfer between an Individual Graphene Sheet and Electrode

    No full text
    Understanding the heterogeneous electron-transfer (ET) kinetics on graphene is essential for its extensive applications. Here, on the basis of the redox-induced fluorescence variation of monolayer graphene itself, the heterogeneous ET kinetics at the interface between the electrode and the monolayer graphene was studied label-freely at the single-sheet level. By tuning the defect density on graphene, an optimal heterogeneous ET rate was observed at a moderate defect density, indicating defect-driven ET kinetics. The heterogeneities of both the intrasheet and intersheet ET kinetics were revealed at the single-sheet level. With the optimal defective graphene sheets as a sensing material for oxygen gas, a cost-effective electrochemical oxygen sensor was obtained with high sensitivity, fast response/recovery, and remarkable durability. The results obtained here deepen our understanding of the electrochemical properties of graphene and imply that rational defect control can enhance the ET process between the electrode and graphene and then improve the performance of graphene-based functional materials or devices

    Image_4_Association Study of KCNH7 Polymorphisms and Individual Responses to Risperidone Treatment in Schizophrenia.jpeg

    No full text
    Risperidone has been used to treat the symptoms of schizophrenia and to reduce its relapse. However, the responses to treatment show great variability among patients. The potassium channel has been reported as an effective target for antipsychotics. KCNH7, a member of the voltage-gated K+ channel Kv11 family, is primarily expressed in the brain. Here, we assessed the genetic association of KCNH7 with risperidone responses in 393 schizophrenia patients. The patients were treated with risperidone for 6 weeks. The reduction rates of Positive and Negative Syndrome Scale (PANSS) scores were determined to quantify drug response. We also examined the associations between six single-nucleotide polymorphisms (SNPs) of KCNH7 and the risperidone responses for a total of 6 weeks. The SNP rs77699177 (C > T) in the KCNH7 gene intron was significantly associated with the treatment response reflected by the PANSS reduction rate (CC, 55.8 ± 23.0; TC, 70.9 ± 20.3, P = 0.000110), indicating that patients with the TC genotype have better efficacy for antipsychotic therapy. The rs2241240 SNP also showed a significant association with treatment responses after 6 weeks of treatment (P = 0.00256). The findings indicate that the voltage-gated K+ channel KCNH7 is a potential functional marker for the identification of the response to risperidone treatment in schizophrenia patients.Note: The study was registered under clinical trial number ChiCTR-RNC-09000522 (http://www.chictr.org/).</p

    DataSheet_1_Association Study of KCNH7 Polymorphisms and Individual Responses to Risperidone Treatment in Schizophrenia.docx

    No full text
    Risperidone has been used to treat the symptoms of schizophrenia and to reduce its relapse. However, the responses to treatment show great variability among patients. The potassium channel has been reported as an effective target for antipsychotics. KCNH7, a member of the voltage-gated K+ channel Kv11 family, is primarily expressed in the brain. Here, we assessed the genetic association of KCNH7 with risperidone responses in 393 schizophrenia patients. The patients were treated with risperidone for 6 weeks. The reduction rates of Positive and Negative Syndrome Scale (PANSS) scores were determined to quantify drug response. We also examined the associations between six single-nucleotide polymorphisms (SNPs) of KCNH7 and the risperidone responses for a total of 6 weeks. The SNP rs77699177 (C > T) in the KCNH7 gene intron was significantly associated with the treatment response reflected by the PANSS reduction rate (CC, 55.8 ± 23.0; TC, 70.9 ± 20.3, P = 0.000110), indicating that patients with the TC genotype have better efficacy for antipsychotic therapy. The rs2241240 SNP also showed a significant association with treatment responses after 6 weeks of treatment (P = 0.00256). The findings indicate that the voltage-gated K+ channel KCNH7 is a potential functional marker for the identification of the response to risperidone treatment in schizophrenia patients.Note: The study was registered under clinical trial number ChiCTR-RNC-09000522 (http://www.chictr.org/).</p

    Image_1_Association Study of KCNH7 Polymorphisms and Individual Responses to Risperidone Treatment in Schizophrenia.jpeg

    No full text
    Risperidone has been used to treat the symptoms of schizophrenia and to reduce its relapse. However, the responses to treatment show great variability among patients. The potassium channel has been reported as an effective target for antipsychotics. KCNH7, a member of the voltage-gated K+ channel Kv11 family, is primarily expressed in the brain. Here, we assessed the genetic association of KCNH7 with risperidone responses in 393 schizophrenia patients. The patients were treated with risperidone for 6 weeks. The reduction rates of Positive and Negative Syndrome Scale (PANSS) scores were determined to quantify drug response. We also examined the associations between six single-nucleotide polymorphisms (SNPs) of KCNH7 and the risperidone responses for a total of 6 weeks. The SNP rs77699177 (C > T) in the KCNH7 gene intron was significantly associated with the treatment response reflected by the PANSS reduction rate (CC, 55.8 ± 23.0; TC, 70.9 ± 20.3, P = 0.000110), indicating that patients with the TC genotype have better efficacy for antipsychotic therapy. The rs2241240 SNP also showed a significant association with treatment responses after 6 weeks of treatment (P = 0.00256). The findings indicate that the voltage-gated K+ channel KCNH7 is a potential functional marker for the identification of the response to risperidone treatment in schizophrenia patients.Note: The study was registered under clinical trial number ChiCTR-RNC-09000522 (http://www.chictr.org/).</p

    Image_2_Association Study of KCNH7 Polymorphisms and Individual Responses to Risperidone Treatment in Schizophrenia.jpeg

    No full text
    Risperidone has been used to treat the symptoms of schizophrenia and to reduce its relapse. However, the responses to treatment show great variability among patients. The potassium channel has been reported as an effective target for antipsychotics. KCNH7, a member of the voltage-gated K+ channel Kv11 family, is primarily expressed in the brain. Here, we assessed the genetic association of KCNH7 with risperidone responses in 393 schizophrenia patients. The patients were treated with risperidone for 6 weeks. The reduction rates of Positive and Negative Syndrome Scale (PANSS) scores were determined to quantify drug response. We also examined the associations between six single-nucleotide polymorphisms (SNPs) of KCNH7 and the risperidone responses for a total of 6 weeks. The SNP rs77699177 (C > T) in the KCNH7 gene intron was significantly associated with the treatment response reflected by the PANSS reduction rate (CC, 55.8 ± 23.0; TC, 70.9 ± 20.3, P = 0.000110), indicating that patients with the TC genotype have better efficacy for antipsychotic therapy. The rs2241240 SNP also showed a significant association with treatment responses after 6 weeks of treatment (P = 0.00256). The findings indicate that the voltage-gated K+ channel KCNH7 is a potential functional marker for the identification of the response to risperidone treatment in schizophrenia patients.Note: The study was registered under clinical trial number ChiCTR-RNC-09000522 (http://www.chictr.org/).</p

    Image_3_Association Study of KCNH7 Polymorphisms and Individual Responses to Risperidone Treatment in Schizophrenia.jpeg

    No full text
    Risperidone has been used to treat the symptoms of schizophrenia and to reduce its relapse. However, the responses to treatment show great variability among patients. The potassium channel has been reported as an effective target for antipsychotics. KCNH7, a member of the voltage-gated K+ channel Kv11 family, is primarily expressed in the brain. Here, we assessed the genetic association of KCNH7 with risperidone responses in 393 schizophrenia patients. The patients were treated with risperidone for 6 weeks. The reduction rates of Positive and Negative Syndrome Scale (PANSS) scores were determined to quantify drug response. We also examined the associations between six single-nucleotide polymorphisms (SNPs) of KCNH7 and the risperidone responses for a total of 6 weeks. The SNP rs77699177 (C > T) in the KCNH7 gene intron was significantly associated with the treatment response reflected by the PANSS reduction rate (CC, 55.8 ± 23.0; TC, 70.9 ± 20.3, P = 0.000110), indicating that patients with the TC genotype have better efficacy for antipsychotic therapy. The rs2241240 SNP also showed a significant association with treatment responses after 6 weeks of treatment (P = 0.00256). The findings indicate that the voltage-gated K+ channel KCNH7 is a potential functional marker for the identification of the response to risperidone treatment in schizophrenia patients.Note: The study was registered under clinical trial number ChiCTR-RNC-09000522 (http://www.chictr.org/).</p

    Image_5_Association Study of KCNH7 Polymorphisms and Individual Responses to Risperidone Treatment in Schizophrenia.jpeg

    No full text
    Risperidone has been used to treat the symptoms of schizophrenia and to reduce its relapse. However, the responses to treatment show great variability among patients. The potassium channel has been reported as an effective target for antipsychotics. KCNH7, a member of the voltage-gated K+ channel Kv11 family, is primarily expressed in the brain. Here, we assessed the genetic association of KCNH7 with risperidone responses in 393 schizophrenia patients. The patients were treated with risperidone for 6 weeks. The reduction rates of Positive and Negative Syndrome Scale (PANSS) scores were determined to quantify drug response. We also examined the associations between six single-nucleotide polymorphisms (SNPs) of KCNH7 and the risperidone responses for a total of 6 weeks. The SNP rs77699177 (C > T) in the KCNH7 gene intron was significantly associated with the treatment response reflected by the PANSS reduction rate (CC, 55.8 ± 23.0; TC, 70.9 ± 20.3, P = 0.000110), indicating that patients with the TC genotype have better efficacy for antipsychotic therapy. The rs2241240 SNP also showed a significant association with treatment responses after 6 weeks of treatment (P = 0.00256). The findings indicate that the voltage-gated K+ channel KCNH7 is a potential functional marker for the identification of the response to risperidone treatment in schizophrenia patients.Note: The study was registered under clinical trial number ChiCTR-RNC-09000522 (http://www.chictr.org/).</p

    DataSheet_1_A mass spectrometry imaging approach on spatiotemporal distribution of multiple alkaloids in Gelsemium elegans.pdf

    No full text
    Gelsemium elegans contains multiple alkaloids with pharmacological effects, thus researchers focus on the identification and application of alkaloids extracted from G. elegans. Regretfully, the spatiotemporal distribution of alkaloids in G. elegans is still unclear. In this study, the desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was applied to simultaneously analyze the distribution of pharmacologically important alkaloids in different organ/tissue sections of G. elegans at different growth stages. Finally, 23 alkaloids were visualized in roots, stems and leaves at seedling stage and 19 alkaloids were observed at mature stage. In mature G. elegans, 16 alkaloids were distributed in vascular bundle region of mature roots, 15 alkaloids were mainly located in the pith region of mature stems and 2 alkaloids were enriched in epidermis region of mature stems. A total of 16 alkaloids were detected in leaf veins of mature leaves and 17 alkaloids were detected in shoots. Interestingly, diffusion and transfer of multiple alkaloids in tissues have been observed along with the development and maturation. This study comprehensively characterized the spatial metabolomics of G. elegans alkaloids, and the spatiotemporal distribution of alkaloid synthesis. In addition, the results also have reference value for the development and application of Gelsemium elegans and other medicinal plants.</p

    Data_Sheet_1_Differential impact of body mass index and leptin on baseline and longitudinal positron emission tomography measurements of the cerebral metabolic rate for glucose in amnestic mild cognitive impairment.pdf

    No full text
    IntroductionSeveral studies have suggested that greater adiposity in older adults is associated with a lower risk of Alzheimer’s disease (AD) related cognitive decline, some investigators have postulated that this association may be due to the protective effects of the adipose tissue-derived hormone leptin. In this study we sought to demonstrate that higher body mass indices (BMIs) are associated with greater baseline FDG PET measurements of the regional cerebral metabolic rate for glucose (rCMRgl), a marker of local neuronal activity, slower rCMRgl declines in research participants with amnestic mild cognitive impairment (aMCI). We then sought to clarify the extent to which those relationships are attributable to cerebrospinal fluid (CSF) or plasma leptin concentrations.Materials and methodsWe used baseline PET images from 716 73 ± 8 years-old aMCI participants from the AD Neuroimaging Initiative (ADNI) of whom 453 had follow up images (≥6 months; mean follow up time 3.3 years). For the leptin analyses, we used baseline CSF samples from 81 of the participants and plasma samples from 212 of the participants.ResultsAs predicted, higher baseline BMI was associated with greater baseline CMRgl measurements and slower declines within brain regions preferentially affected by AD. In contrast and independently of BMI, CSF, and plasma leptin concentrations were mainly related to less baseline CMRgl within mesocorticolimbic brain regions implicated in energy homeostasis.DiscussionWhile higher BMIs are associated with greater baseline CMRgl and slower declines in persons with aMCI, these associations appear not to be primarily attributable to leptin concentrations.</p

    Curvedness Values of Ground Truth and Mean Curvedness Values of 30 Samples before and after Restoration over 16 Regions.

    No full text
    <p>Curvedness Values of Ground Truth and Mean Curvedness Values of 30 Samples before and after Restoration over 16 Regions.</p
    corecore