510 research outputs found
The Andreev states of a superconducting quantum dot: mean field vs exact numerical results
We analyze the spectral density of a single level quantum dot coupled to
superconducting leads focusing on the Andreev states appearing within the
superconducting gap. We use two complementary approaches: the numerical
renormalization group and the Hartree-Fock approximation. Our results show the
existence of up to four bound states within the gap when the ground state is a
spin doublet (\pi\ phase). Furthermore the results demonstrate the reliability
of the mean field description within this phase. This is understood from a
complete correspondence that can be established between the exact and the mean
field quasiparticle excitation spectrumComment: 6 pages, 5 figure
Interpolative method for transport properties of quantum dots in the Kondo regime
We present an interpolative method for describing coherent transport through
an interacting quantum dot. The idea of the method is to construct an
approximate electron self-energy which becomes exact both in the limits of weak
and strong coupling to the leads. The validity of the approximation is first
checked for the case of a single (spin-degenerate) dot level. A generalization
to the multilevel case is then discussed. We present results both for the
density of states and the temperature dependent linear conductance showing the
transition from the Kondo to the Coulomb blockade regime.Comment: 8 pages, 3 figures, includes lamuphys.sty, submitted to the
Proceedings of the XVI Sitges Conference on Statistical Mechanic
Quasiparticle trapping, Andreev level population dynamics, and charge imbalance in superconducting weak links
We present a comprehensive theoretical framework for the Andreev bound state
population dynamics in superconducting weak links. Contrary to previous works,
our approach takes into account the generated nonequilibrium distribution of
the continuum quasiparticle states in a self-consistent way. As application of
our theory, we show that the coupling of the superconducting contact to
environmental phase fluctuations induces a charge imbalance of the continuum
quasiparticle population. This imbalance is due to the breaking of the
left-right symmetry in the rates connecting continuum quasiparticles and the
Andreev bound state system, and causes a quasiparticle current on top of the
Josephson current in a ring geometry. We evaluate the phase dependence of the
quasiparticle current for realistic choices of the model parameters. Our theory
also allows one to analyze the quantum coherent evolution of the system from an
arbitrary initial state.Comment: 12 pages, 6 figures, final version (minor changes) to appear in PR
Microscopic theory of Cooper pair beam splitters based on carbon nanotubes
We analyze microscopically a Cooper pair splitting device in which a central
superconducting lead is connected to two weakly coupled normal leads through a
carbon nanotube. We determine the splitting efficiency at resonance in terms of
geometrical and material parameters, including the effect of spin-orbit
scattering. While the efficiency in the linear regime is limited to 50% and
decay exponentially as a function of the width of the superconducting region we
show that it can rise up to in the non-linear regime for certain
regions of the stability diagram.Comment: 5 pages, 5 figure
Nonlinear effects of phonon fluctuations on transport through nanoscale junctions
We analyze the effect of electron-phonon coupling on the full counting
statistics of a molecular junction beyond the lowest order perturbation theory.
Our approach allows to take into account analytically the feedback between the
non-equilibrium phonon and electronic distributions in the quantum regime. We
show that even for junctions with high transmission and relatively weak
electron-phonon coupling this feedback gives rise to increasingly higher
nonlinearities in the voltage dependence of the cumulants of the transmitted
charges distribution.Comment: 4 pages, 3 figure
- …