300 research outputs found
A Survey on Bayesian Deep Learning
A comprehensive artificial intelligence system needs to not only perceive the
environment with different `senses' (e.g., seeing and hearing) but also infer
the world's conditional (or even causal) relations and corresponding
uncertainty. The past decade has seen major advances in many perception tasks
such as visual object recognition and speech recognition using deep learning
models. For higher-level inference, however, probabilistic graphical models
with their Bayesian nature are still more powerful and flexible. In recent
years, Bayesian deep learning has emerged as a unified probabilistic framework
to tightly integrate deep learning and Bayesian models. In this general
framework, the perception of text or images using deep learning can boost the
performance of higher-level inference and in turn, the feedback from the
inference process is able to enhance the perception of text or images. This
survey provides a comprehensive introduction to Bayesian deep learning and
reviews its recent applications on recommender systems, topic models, control,
etc. Besides, we also discuss the relationship and differences between Bayesian
deep learning and other related topics such as Bayesian treatment of neural
networks.Comment: To appear in ACM Computing Surveys (CSUR) 202
Spatiotemporal Modeling for Crowd Counting in Videos
Region of Interest (ROI) crowd counting can be formulated as a regression
problem of learning a mapping from an image or a video frame to a crowd density
map. Recently, convolutional neural network (CNN) models have achieved
promising results for crowd counting. However, even when dealing with video
data, CNN-based methods still consider each video frame independently, ignoring
the strong temporal correlation between neighboring frames. To exploit the
otherwise very useful temporal information in video sequences, we propose a
variant of a recent deep learning model called convolutional LSTM (ConvLSTM)
for crowd counting. Unlike the previous CNN-based methods, our method fully
captures both spatial and temporal dependencies. Furthermore, we extend the
ConvLSTM model to a bidirectional ConvLSTM model which can access long-range
information in both directions. Extensive experiments using four publicly
available datasets demonstrate the reliability of our approach and the
effectiveness of incorporating temporal information to boost the accuracy of
crowd counting. In addition, we also conduct some transfer learning experiments
to show that once our model is trained on one dataset, its learning experience
can be transferred easily to a new dataset which consists of only very few
video frames for model adaptation.Comment: Accepted by ICCV 201
Semi-Supervised Discriminant Analysis Using Robust Path-Based Similarity
Linear Discriminant Analysis (LDA), which works by maximizing the within-class similarity and minimizing the between-class similarity simultaneously, is a popular dimensionality reduction technique in pattern recognition and machine learning. In real-world applications when labeled data are limited, LDA does not work well. Under many situations, however, it is easy to obtain unlabeled data in large quantities. In this paper, we propose a novel dimensionality reduction method, called Semi-Supervised Discriminant Analysis (SSDA), which can utilize both labeled and unlabeled data to perform dimensionality reduction in the semisupervised setting. Our method uses a robust path-based similarity measure to capture the manifold structure of the data and then uses the obtained similarity to maximize the separability between different classes. A kernel extension of the proposed method for nonlinear dimensionality reduction in the semi-supervised setting is also presented. Experiments on face recognition demonstrate the effectiveness of the proposed method. 1
Human action recognition using local spatiotemporal discriminant embedding
Human action video sequences can be considered as nonlinear dynamic shape manifolds in the space of image frames. In this paper, we address learning and classifying human actions on embedded low-dimensional manifolds. We propose a novel manifold embedding method, called Local Spatio-Temporal Discriminant Embedding (LSTDE). The discriminating capabilities of the proposed method are two-fold: (1) for local spatial discrimination, LSTDE projects data points (silhouette-based image frames of human action sequences) in a local neighborhood into the embedding space where data points of the same action class are close while those of different classes are far apart; (2) in such a local neighborhood, each data point has an associated short video segment, which forms a local temporal subspace on the embedded manifold. LSTDE finds an optimal embedding which maximizes the principal angles between those temporal subspaces associated with data points of different classes. Benefiting from the joint spatio-temporal discriminant embedding, our method is potentially more powerful for classifying human actions with similar space-time shapes, and is able to perform recognition on a frame-byframe or short video segment basis. Experimental results demonstrate that our method can accurately recognize human actions, and can improve the recognition performance over some representative manifold embedding methods, especially on highly confusing human action types. 1
Understanding and Diagnosing Visual Tracking Systems
Several benchmark datasets for visual tracking research have been proposed in
recent years. Despite their usefulness, whether they are sufficient for
understanding and diagnosing the strengths and weaknesses of different trackers
remains questionable. To address this issue, we propose a framework by breaking
a tracker down into five constituent parts, namely, motion model, feature
extractor, observation model, model updater, and ensemble post-processor. We
then conduct ablative experiments on each component to study how it affects the
overall result. Surprisingly, our findings are discrepant with some common
beliefs in the visual tracking research community. We find that the feature
extractor plays the most important role in a tracker. On the other hand,
although the observation model is the focus of many studies, we find that it
often brings no significant improvement. Moreover, the motion model and model
updater contain many details that could affect the result. Also, the ensemble
post-processor can improve the result substantially when the constituent
trackers have high diversity. Based on our findings, we put together some very
elementary building blocks to give a basic tracker which is competitive in
performance to the state-of-the-art trackers. We believe our framework can
provide a solid baseline when conducting controlled experiments for visual
tracking research
- …