95 research outputs found

    Side-View Operando Optical Microscopy Analysis of a Graphite Anode to Study Its Kinetic Hysteresis

    Get PDF
    Operando analyses have provided several breakthroughs in the construction of high-performance materials and devices, including energy storage systems. However, despite the advances in electrode engineering, the formidable issues of lithium intercalation and deintercalation kinetics cannot be investigated by using planar observations. This study concerns side-view operando observation by optical microscopy of a graphite anode based on its color changes during electrochemical lithiation. Since the graphite color varies according to the optical energy gap during lithiation and delithiation, this technique can be used to study the corresponding charge-discharge kinetics. In addition, the cell configuration uses liquid electrolytes similar to commercial cells, allowing practical application. Furthermore, this side-view observation has shown that microscale spatial variations in rate and composition control the insertion and deinsertion, revealing the kinetics throughout the whole electrode. The results of this study could enhance the fundamental understanding of the kinetics of battery materials

    Acoustic radiation force impulse imaging of biopsy-proven Kikuchi disease: initial experiences for evaluating feasibility in pediatric patients

    Get PDF
    Purpose This study evaluated the feasibility of acoustic radiation force impulse (ARFI) elastography and characterized the sonographic features of lymph nodes (LNs) with Kikuchi disease in pediatric patients. Methods Seventy-six cervical LN biopsies were performed for the diagnosis of cervical lymphadenopathy. ARFI imaging was performed, and the characteristic ultrasound features of the biopsied LNs and the contralateral LNs were analyzed. We also reviewed clinical and conventional ultrasonographic findings. Results On histology, 56 patients were diagnosed with Kikuchi disease. These LNs were large and elongated, with increased perinodal echogenicity and capsular thickening. In 38 of them, ARFI elastography was performed, and the median shear wave velocity (SWV) of the biopsied LNs with Kikuchi disease (2.19 m/sec; range, 1.45 to 4.57 m/sec) was higher than of the contralateral LNs (1.72 m/sec; range, 0.95 to 2.65 m/sec; P<0.001). In patients with reactive hyperplasia, the mean SWV of the biopsied LNs (2.00 m/sec; range, 1.49 to 2.26 m/sec) was higher than that of the contralateral LNs (1.55 m/sec; range, 1.21 to 2.32 m/sec; P=0.031). Conclusion The SWV of LNs with Kikuchi disease was significantly higher than that of the contralateral LNs. Morphologically, LNs with Kikuchi disease showed an enlarged, elongated, and oval shape, increased perinodal echogenicity, and capsular thickening. In addition to the conventional ultrasonographic findings, the application of ARFI is feasible even in pediatric patients for the evaluation of cervical lymphadenopathy

    Lack of Effect of Dexamethasone on Growth of Orientia Tsutsugamushi Gilliam in Mouse L929 Cells

    Get PDF
    PURPOSE: Previous studies and our own clinical experience suggest that concurrent corticosteroid treatment for severe rickettsial disease with multiorgan failure may improve the clinical course or reduce mortality. However, the use of corticosteroids as adjunctive treatment for rickettsial diseases is controversial. We attempted to determine the influences of corticosteroid on the growth of Orientia tsutsugamushi in vitro to justify and evaluate the clinical applicability of corticosteroid in rickettsial disease. MATERIALS AND METHODS: L929 cells were infected with Orientia tsutsugamushi Gilliam. Dexamethasone was added to the cells at final concentrations of 10¹ and 10⁷ pg/mL. Cultures were incubated at 35°C and processed for flow cytometry on the 6th day after addition of dexamethasone. RESULTS: Observation on the 6th day after treatment with dexamethasone in infected cultures revealed that there was no difference in fluorescence intensity among the treatment wells. Treatment of the cells with dexamethasone at concentrations of 10¹ and 10⁷ pg/mL showed no influence on the growth of Orientia tsutsugamushi. CONCLUSION: Our results to show that isolated corticosteroid does not enhance the replication of Orientia tsutsugamushi in vitro. Concurrent use of anti-inflammatory or immunosuppressive doses of corticosteroids in conjunction with antibiotics may not have detrimental effects on the course of scrub typhus.ope

    Heteroatom Doped High Porosity Carbon Nanomaterials as Electrodes for Energy Storage in Electrochemical Capacitors: A Review

    Get PDF
    At present it is indispensable to develop and implement new/state-of-the-art carbon nanomaterials as electrodes in electrochemical capacitors, since conventional activated carbon based supercapacitor cells cannot fulfil the growing demand of high energy and power densities of electronic devices of the present era, as a result of the rapid developments in this field. Functionalized carbon nanomaterials symbolize the type of materials with huge potential for their use in energy related applications in general and as an electrode active material for electrochemical capacitors in particular. Nitrogen doping of carbons has shown promising results in the field of energy storage in electrochemical capacitors, gaining attention of researchers to evaluate the performance of new heteroatoms functionalised materials such as sulphur, phosphorus and boron lately. Literature is widely available on nitrogen doped materials research for energy storage applications; however, there has been a limited number of review works on other functional materials beyond nitrogen. This review article thus aims to provide important insights and an up-to-date analysis of the most recent developments, the directions of future research, and the techniques used for the synthesis of these functional materials. A critical review of the electrochemical performance including specific capacitance and energy/power densities is made, when these single doped or co-doped active materials are used as electrodes in electrochemical capacitors

    Graphene-Based Nanocomposites for Energy Storage

    Get PDF
    Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed

    Designing Surficial Property for the Practical Use of Silicon-based Battery System

    No full text
    School of Energy and Chemical Engineering (Energy Engineering (Battery Science and Technology))clos

    PROKR1-CREB-NR4A2 axis for oxidative muscle fiber specification and improvement of metabolic function

    No full text
    Metabolic disorders are characterized by an imbalance in muscle fiber composition, and a potential therapeutic approach involves increasing the proportion of oxidative muscle fibers. Prokineticin receptor 1 (PROKR1) is a G protein-coupled receptor that plays a role in various metabolic functions, but its specific involvement in oxidative fiber specification is not fully understood. Here, we investigated the functions of PROKR1 in muscle development to address metabolic disorders and muscular diseases. A meta-analysis revealed that the activation of PROKR1 upregulated exercise-responsive genes, particularly nuclear receptor subfamily 4 group A member 2 (NR4A2). Further investigations using ChIP-PCR, luciferase assays, and pharmacological interventions demonstrated that PROKR1 signaling enhanced NR4A2 expression by Gs-mediated phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) in both mouse and human myotubes. Genetic and pharmacological interventions showed that the PROKR1-NR4A2 axis promotes the specification of oxidative muscle fibers in both myocytes by promoting mitochondrial biogenesis and metabolic function. Prokr1-deficient mice displayed unfavorable metabolic phenotypes, such as lower lean mass, enlarged muscle fibers, impaired glucose, and insulin tolerance. These mice also exhibited reduced energy expenditure and exercise performance. The deletion of Prokr1 resulted in decreased oxidative muscle fiber composition and reduced activity in the Prokr1-CREB-Nr4a2 pathway, which were restored by AAV-mediated Prokr1 rescue. In summary, our findings highlight the activation of the PROKR1- CREB-NR4A2 axis as a mechanism for increasing the oxidative muscle fiber composition, which positively impacts overall metabolic function. This study lays an important scientific foundation for the development of effective muscular-metabolic therapeutics with unique mechanisms of action.Y

    Positive Correlation between nNOS and Stress-Activated Bowel Motility Is Confirmed by In Vivo HiBiT System

    No full text
    Neuronal nitric oxide synthase (nNOS) has various roles as a neurotransmitter. However, studies to date have produced insufficient data to fully support the correlation between nNOS and bowel motility. This study aimed to investigate the correlation between nNOS expression and gastrointestinal (GI) tract motility using a stress-induced neonatal maternal separation (NMS) mouse model. In this study, we generated a genetically modified mouse with the HiBiT sequence knock-in into the nNOS gene using CRISPR/Cas9 for analyzing accurate nNOS expression. nNOS expression was measured in the stomach, small intestine, large intestine, adrenal gland, and hypothalamus tissues after establishing the NMS model. The NMS model exhibited a significant increase in nNOS expression in large intestine, adrenal gland, and hypothalamus. Moreover, a significant positive correlation was observed between whole gastrointestinal transit time and the expression level of nNOS. We reasoned that NMS induced chronic stress and consequent nNOS activation in the hypothalamic-pituitary-adrenal (HPA) axis, and led to an excessive increase in intestinal motility in the lower GI tract. These results demonstrated that HiBiT is a sensitive and valuable tool for analyzing in vivo gene activation, and nNOS could be a biomarker of the HPA axis-linked lower intestinal tract dysfunction
    corecore